В Петербурге создали нейросеть по отслеживанию подозрительных транзакций

В Петербурге создали нейросеть по отслеживанию подозрительных транзакций

В Петербурге создали нейросеть по отслеживанию подозрительных транзакций

Ученые из Санкт-Петербурга настроили нейросеть на борьбу с мошенничеством в интернете. Она способна отличать подозрительные транзакции от безопасных и отсеивать мошенников, уверяют разработчики.

О новой модели ИИ в кибербезопасности ТАСС рассказали в Санкт-Петербургском политехническом университете Петра Великого (СПбПУ). Речь о модели графовой нейросети (графы — структуры данных, представляющие собой сети с парными связями внутри).

При обучении нейросети дополнительно учитывалась идентификационная информация: номер банковской карты, данные об отправителе и получателе, тип “пластика”, характеристики устройства, с помощью которого была совершена транзакция, и другое.

“Во время экспериментальных испытаний модель показала свой высокий потенциал", — говорится в сообщении ученых.

Особенность новой модели в том, что она уделяет внимание определенным закономерностям, по которым можно распознать противоправные действия, добавляют разработчики.

"Если человек открыл счет в банке полгода назад и за этот период времени средняя сумма транзакций за день составляла 1 тыс, рублей, после чего в один день он получил денежные переводы в сумме 30 тыс. рублей, вероятность того, что нейронная сеть отнесет этого человека к классу мошенников, возрастет", — приводит в пример пресс-служба Политеха слова доктора технических наук, профессора Института кибербезопасности и защиты информации СПбПУ Дарьи Лавровой.

Создатели новой модели нейросети уверены, что их разработку уже сейчас можно использовать на первой линии защиты от интернет-мошенничества.

Но технические методы все равно не способны полностью защитить от обмана, так как самое уязвимое звено — не компьютер, а человек, заключают ученые.

Добавим, накануне в “Лаборатории Касперского” рассказали о проверке ChatGPT на умение распознавать фишинговые ссылки. Выяснилось, что нейросеть знает признаки риска, хорошо определяет атакуемые организации, но склонна видеть опасность там, где ее нет.

Нейросеть для ЖКХ научилась материться в первый месяц обучения

Разработчикам отечественного голосового помощника для сферы ЖКХ пришлось «переучивать» систему после того, как в процессе обучения бот освоил ненормативную лексику. Этот случай наглядно показал, насколько критично качество данных, на которых обучаются нейросети.

О возникшей проблеме рассказал ТАСС президент Национального объединения организаций в сфере технологий информационного моделирования (НОТИМ) Михаил Викторов на Сибирском строительном форуме, который проходит в Новосибирске.

«Приведу забавный случай: нейросеть учится, и буквально уже в первый месяц разработчики обнаружили такую коллизию — нейросеть научилась мату. Как говорится, с кем поведёшься, от того и наберёшься. Эту проблему, конечно, пришлось устранять. Но это в том числе показатель активного взаимодействия с нашими гражданами», — рассказал Михаил Викторов.

При этом, по его словам, внедрение ботов позволило сократить число операторов кол-центров в 5–6 раз без потери качества обслуживания. Нейросетевые инструменты способны обрабатывать до 90% входящих обращений.

Уровень удовлетворённости качеством обслуживания, по оценке Викторова, составляет около 80%. Передавать звонки операторам целесообразно лишь в экстренных случаях — например, при аварийных ситуациях.

Эксперты ранее отмечали, что именно данные, на которых обучается ИИ, являются ключевой причиной появления некорректных или предвзятых ответов нейросетевых инструментов.

RSS: Новости на портале Anti-Malware.ru