Эксперты создали систему видеоаналитики Privid с упором на приватность

Эксперты создали систему видеоаналитики Privid с упором на приватность

Эксперты создали систему видеоаналитики Privid с упором на приватность

В Массачусетском технологическом институте создали аналитическую систему обработки видеоданных, позволяющую поддерживать общественный порядок без навязчивой слежки. Продукт, получивший имя Privid, также помогает снизить риски в отношении злоупотреблений и утечки частных данных.

Подобную систему, по словам авторов проекта, можно использовать для мониторинга плотности транспортных и пеших потоков на дорогах, сбора статистики по ношению масок, оценки поведения покупателей в магазинах. К сожалению, в таких случаях приватность объектов наблюдения часто упускается из виду, в лучшем случае лица людей скрываются с помощью мозаики или дополнительного непрозрачного слоя.

Такой метод имеет свои недостатки: выявить соотношение театралов в масках и без, например, становится невозможным, к тому же система может ошибиться и оставить лицо неразмытым. Исследователей из MIT такое положение дел не устроило, поэтому они решили поискать альтернативу, способную гарантировать большую степень конфиденциальности материалам, получаемым с камер видеонаблюдения.

Система Privid построена на принципах дифференциальной приватности — методики, позволяющей собирать и расшаривать статистические данные без раскрытия информации, идентифицирующей личность (PII). Чтобы предотвратить деанонимизацию и утечки, продукт добавляет на выходе случайные данные в видеоматериалы. Этого шума совсем немного — ровно столько, сколько требуется для сохранения анонимности, в противном случае информация станет бесполезной.

Разработчики также предусмотрели дополнительный элемент случайности. Целевое видео разбивается на фрагменты одинаковой длительности, которые обрабатываются по отдельности, без вывода промежуточных результатов, а затем вновь соединяются.

Созданную в стенах MIT систему видеоаналитики можно использовать вместе с вошедшими в обиход глубокими нейросетями. Тестирование Privid на разных наборах данных и в различных сценариях показало точность на уровне 79-99% в сравнении с аналогами, не учитывающими приватность.

У криминального ИИ-сервиса WormGPT украли данные 19 тысяч подписчиков

На популярном онлайн-форуме, посвященном утечкам, появилось сообщение о взломе ИИ-платформы, специально созданной для нужд киберкриминала. К посту прикреплен образец добычи — персональные данные, якобы принадлежащие юзерам WormGPT.

По словам автора атаки, ему суммарно удалось украсть информацию о 19 тыс. подписчиков хакерского ИИ-сервиса, в том числе их имейлы, ID и детали платежей.

Эксперты Cybernews изучили слитый образец февральских записей из базы и обнаружили, что они действительно содержат пользовательские данные и дополнительные сведения:

  • тип подписки;
  • валюта, в которой производилась оплата;
  • суммарная выручка по тому же тарифному плану.

Автор поста об атаке на WormGPT — хорошо известный форумчанин, на счету которого множество легитимных публикаций. Этот факт, по мнению исследователей, придает еще больше веса утверждению о взломе криминального ИИ-сервиса.

Утечка пользовательской базы WormGPT позволяет идентифицировать авторов атак с применением этого ИИ-инструмента. Злоумышленники могут ею воспользоваться, к примеру, для адресного фишинга или шантажа.

RSS: Новости на портале Anti-Malware.ru