Система анализа софта CodeScoring добавлена в реестр российского ПО

Система анализа софта CodeScoring добавлена в реестр российского ПО

Система анализа софта CodeScoring добавлена в реестр российского ПО

Система композиционного анализа программного обеспечения CodeScoring официально добавлено в реестр российского ПО. Официальный дистрибьютор продукта в России — компания Web Control.

Современная разработка ИТ-продуктов активно применяет программные компоненты с открытым исходным кодом (OSS, Open Source Software). Практически всегда таких компонентов на порядок больше, чем проприетарных.

Использование OSS даёт значимое ускорение разработки, но при этом его бесконтрольное использование увеличивает риски для безопасности. Для управления этими рисками применяются решения класса композиционного анализа ПО (SCA, Software Composition Analysis), которые автоматически определяют используемые OSS зависимости, показывают найденные в них уязвимости и предоставляют информацию об их устранении.

Продукт CodeScoring может повысить безопасность использования Open Source на всех этапах обеспечения жизненного цикла разработки программного обеспечения. База знаний CodeScoring содержит собираемый из крупнейших репозиториев реестр компонентов, который регулярно обогащается данными об имеющихся в них уязвимостях и лицензиях, получаемых из различных источников. CodeScoring поддерживает ключевые OSS экосистемы популярных языков программирования, такие как Maven, PyPi, NPM, RubyGems и др.

CodeScoring содержит следующие функциональные возможности:

  • Автообнаружение зависимостей — анализ состава кода, автоматическое нахождение файлов манифестов пакетных менеджеров, выявление прямых и транзитивных зависимостей открытого программного обеспечения (OSS).
  • Ведение реестра компонентов программных проектов (SBoM).
  • Проверка совместимости Open Source лицензий — выявление лицензий для обнаруженных OSS зависимостей и проверка их совместимости между собой на основании интегрированных политик.
  • Выявление уязвимых Open Source компонентов в программных проектах на основании актуальной информации из авторитетных источников NVD NIST и GitHub Advisories.
  • Предоставление полной информации об уязвимостях, включая имеющиеся рекомендации по их устранению.
  • Отслеживание новых уязвимостей и изменения лицензионных соглашений в контролируемых программных проектах.
  • Реализация собственных политик применения открытых программных компонентов.
  • Интеграции в жизненный цикл разработки программного обеспечения (SDLC).

CodeScoring работает с наиболее распространенными репозиториями кода: GitHub, GitLab, BitBucket и Azure DevOps. Для полноценной работы в CI/CD пайплайне реализованы API и возможность интеграции через консольного агента.

В 2025 году спрос на ИИ-кадры в России возрос на 17%

По данным J’son & Partners Consulting, потребность российской экономики в специалистах в области ИИ в среднем на 5% превышает число предложений на рынке, и в ближайшие годы этот разрыв будет только увеличиваться.

В 2025 году аналитики зафиксировали рост спроса на подобные кадры на 17% — до 199 тыс. вакансий против 170 тыс. в 2024-м. Примечательна также такая цифра: в 2020-2025 годах доля спроса на ИИ-кадры в общем объеме потребности в ИТ-кадрах увеличилась почти в два раза.

Количество ИИ-экспертов в стране сейчас, по оценкам, составляет 100-120 тысяч (+15% в сравнении с 2024 годом). Из них 1-3 тыс. — это ML-инженеры, остальные — специалисты по созданию и интеграции ИИ-решений.

Основная причина разрыва между спросом и предложением — стремительное освоение ИИ-технологий. В России это происходит в рамках Национальной стратегии по развитию ИИ.

Системы образования не успевают приспосабливаться к новшествам: по оценкам, на перестройку учебных программ и процессов в таких случаях требуется от 7 до 10 лет. За это время требования к компетенциям выпускников успеют смениться несколько раз.

Российские вузы, колледжи, школы демонстрируют готовность адаптироваться к изменениям. Руку помощи им в подготовке востребованных кадров протянули крупные представители ИТ-отрасли, а государство при этом взяло на себя роль медиатора, тиражирующего лучшие практики.

 

В комментарии для «Ведомостей» заместитель гендиректора J’son & Partners Consulting Максим Столповский отметил, что на реализацию программ по подготовке аналитиков больших данных государство уже выделило около 15 млрд рублей. Со стороны бизнеса предполагается софинансирование в объеме не менее 6,4 млрд рублей.

Тем не менее, несмотря на запуск большого количества образовательных программ по ИИ, в том числе бесплатных, рост разрыва между спросом и предложением на этом рынке сохранится как минимум еще 2-3 года.

Основным вызовом в подготовке ИИ-кадров является нехватка преподавателей. В настоящее время эта проблема решается за счет дообучения принятых на работу выпускников смежных профессий.

Столповский считает, что эффективнее было бы привлекать к процессу преподавания профессионалов-практиков из частных компаний. Примеры тому в России уже есть; так, команда экспертов, оказывающих учебным заведениям менторскую помощь в рамках проекта VK Education (более 1100 человек, по итогам 2025 года), пополнилась знатоками ИИ.

Компания «Яндекс» в будущем году собирается предложить вузам помощь в обучении сотрудников применению ИИ в преподавании, научной работе, управлении процессом передачи знаний и практических навыков.

RSS: Новости на портале Anti-Malware.ru