Баги в библиотеках для парсинга URL грозят DoS, утечками данных и RCE

Баги в библиотеках для парсинга URL грозят DoS, утечками данных и RCE

Баги в библиотеках для парсинга URL грозят DoS, утечками данных и RCE

16 популярных сторонних библиотек для парсинга URL страдают от серьёзных проблем в безопасности. Эти восемь уязвимостей, по мнению экспертов, могут затрагивать множество современных веб-приложений.

Выявленные бреши могут привести к DoS, утечкам информации и даже удалённому выполнению кода (RCE) в различных приложениях. Баги обнаружились в сторонних пакетах, которые потенциально могли импортировать в сотни или даже тысячи веб-приложений и проектов.

Например, среди затронутого софта исследователи выделили Flask (написанный на Python фреймворк), Video.js (HTML5-видеоплеер), Belledonne (бесплатная VoIP и IP-телефония), Nagios XI (софт для мониторинга сети) и Clearance (парольная аутентификация на Ruby).

URL-парсинг представляет собой процесс разбивки веб-адреса на ключевые компоненты. Это нужно для того, чтобы трафик направлялся корректно между серверами и различными ссылками. Предназначенные для этого библиотеки, как правило, импортируются в приложения, чтобы обеспечить им описанные выше возможности.

«URL обычно состоят из пяти основных компонентов: схема, путь, запрос и фрагмент. Каждый из этих компонентов выполняет свою задачу», — пишут в отчёте специалисты Claroty Team82.

 

Согласно анализу экспертов, уязвимости возникли благодаря различиям в методе каждой библиотеки. Исследователи изучили в совокупности 16 различных библиотек, среди которых можно отметить urllib (Python), urllib3 (Python), rfc3986 (Python), httptools (Python), curl lib (cURL), Wget, Chrome (Browser), Uri (.NET), URL (Java), URI (Java), parse_url (PHP), url (NodeJS), url-parse (NodeJS), net/url (Go), uri (Ruby) и URI (Perl).

В ходе анализа специалисты выявили пять категорий несоответствий в методе парсинга компонентов: Scheme Confusion, Slash Confusion, Backslash Confusion, URL Encoded Data Confusion, Scheme Mix-ups. Проблема в том, что такие несоответствия могут создать уязвимые блоки кода.

Например, «slash confusion» может привести к появлению багов класса SSRF, а их уже злоумышленник может использовать для выполнения удалённого кода. Оказалось, что разные библиотеки для парсинга URL по-разному обрабатывают ссылки с большим количеством слешей: кто-то игнорирует дополнительный слеш, кто-то передаёт URL без хоста.

В общей сложности исследователи выделили восемь потенциальных уязвимостей в сторонних веб-приложениях. Их список выглядит так:

  1. Открытый редирект Flask-security (Python, CVE-2021-23385)
  2. Открытый редирект Flask-security-too (Python, CVE-2021-32618)
  3. Открытый редирект Flask-User (Python, CVE-2021-23401)
  4. Открытый редирект Flask-unchained (Python, CVE-2021-23393)
  5. Belledonne’s SIP Stack null pointer dereference (DoS) (C, CVE-2021-33056)
  6. Межсайтовый скриптинг Video.js (XSS) (JavaScript, CVE-2021-23414)
  7. Открытый редирект Nagios XI (PHP, CVE-2021-37352)
  8. Открытый редирект Clearance (Ruby, CVE-2021-23435)

Злоумышленники научились использовать умные кормушки для слежки

Злоумышленники могут использовать взломанные умные кормушки для животных для слежки за владельцами. Для получения информации применяются встроенные в устройства микрофоны и видеокамеры. Получив несанкционированный доступ, атакующие способны наблюдать за происходящим в помещении и перехватывать данные.

Об использовании таких устройств в криминальных целях рассказал агентству «Прайм» эксперт Kaspersky ICS CERT Владимир Дащенко.

«Это уже не гипотетическая угроза: известны случаи взлома домашних камер, видеонянь, кормушек для животных и других умных приборов», — предупреждает эксперт.

По словам Владимира Дащенко, вопросам кибербезопасности таких устройств часто не уделяется должного внимания. Между тем любое оборудование с доступом в интернет может стать точкой входа для злоумышленников.

Скомпрометированные устройства могут использоваться и для атак на другие элементы домашней сети — например, смартфоны или компьютеры. Кроме того, они способны становиться частью ботнетов, применяемых для DDoS-атак или майнинга криптовалют. На подобные риски почти год назад обращало внимание МВД России.

Среди признаков возможной компрометации умных устройств эксперт называет самопроизвольные отключения, резкие изменения сетевой активности, появление сообщений об ошибках или другие нетипичные события.

RSS: Новости на портале Anti-Malware.ru