ИИ может узнать ПИН-код банковской карты даже при закрытой панели ATM

ИИ может узнать ПИН-код банковской карты даже при закрытой панели ATM

ИИ может узнать ПИН-код банковской карты даже при закрытой панели ATM

Исследователи в области кибербезопасности показали, как алгоритм машинного обучения может угадать ПИН-код банковской карты, даже если жертва закрывает рукой панель ввода. Узнать заветные четыре цифры получилось в 41% попыток.

Этот вектор атаки предполагает, что злоумышленникам сначала придётся создать точную копию атакуемого банкомата. Это важно, поскольку алгоритм будет учитывать расстояние между кнопками.

После этого преступники должны пустить в ход машинное обучение и научить алгоритм распознавать нажатия клавиш. Тренироваться можно по видеозаписям, на которых реальные клиенты банков вводят свои коды.

 

В рамках эксперимента специалисты собрали (PDF) 5800 видеозаписей, на которых 58 разных граждан вводили ПИН-коды от своих банковских карт. Параллельно Xeon E5-2670 с 128 ГБ оперативной памяти и три Tesla K20m с 5 ГБ оперативной памяти запускали ИИ-модель.

Используя три попытки ввода, что предусматривает каждый банкомат, исследователи смогли распознать 4-значный ПИН-код в 41% случаев. Само собой, расположение камеры играло ключевую роль в вычислении кодов, поскольку надо было учитывать как праворуких пользователей, так и левшей.

Если камера могла записывать аудио, модель экспертов также отмечала звучание каждой клавиши, что повышало шансы успешно угадать ПИН-код.

Злоумышленники научились использовать умные кормушки для слежки

Злоумышленники могут использовать взломанные умные кормушки для животных для слежки за владельцами. Для получения информации применяются встроенные в устройства микрофоны и видеокамеры. Получив несанкционированный доступ, атакующие способны наблюдать за происходящим в помещении и перехватывать данные.

Об использовании таких устройств в криминальных целях рассказал агентству «Прайм» эксперт Kaspersky ICS CERT Владимир Дащенко.

«Это уже не гипотетическая угроза: известны случаи взлома домашних камер, видеонянь, кормушек для животных и других умных приборов», — предупреждает эксперт.

По словам Владимира Дащенко, вопросам кибербезопасности таких устройств часто не уделяется должного внимания. Между тем любое оборудование с доступом в интернет может стать точкой входа для злоумышленников.

Скомпрометированные устройства могут использоваться и для атак на другие элементы домашней сети — например, смартфоны или компьютеры. Кроме того, они способны становиться частью ботнетов, применяемых для DDoS-атак или майнинга криптовалют. На подобные риски почти год назад обращало внимание МВД России.

Среди признаков возможной компрометации умных устройств эксперт называет самопроизвольные отключения, резкие изменения сетевой активности, появление сообщений об ошибках или другие нетипичные события.

RSS: Новости на портале Anti-Malware.ru