В России создали Android-приложение, распознающее телефонного мошенника

В России создали Android-приложение, распознающее телефонного мошенника

В России создали Android-приложение, распознающее телефонного мошенника

Новое приложение, способное отличить телефонного мошенника в самом начале разговора и предупредить о потенциально опасном звонке пользователя, — разработка российских программистов. Основной целевой аудиторией этой системы являются клиенты кредитных организаций и пользователи банковских продуктов.

Всего девелоперы представили три компонента. Помимо вышеописанного противодействия телефонным мошенникам, разработчики предлагают аналогичный сервис для контроля переписки гражданина с мошенником в социальных сетях, а также функцию распознавания фишинговых сайтов.

Нынешние условия, в которых приходится мириться с растущей долей мошенничества среди всех киберпреступлений, давно требуют какого-нибудь радикального решения. Например, по словам зампреда правления Сбербанка Станислава Кузнецова, в 2020 доля телефонного мошенничества от всех киберпреступлений составила 97%.

На сегодняшний день наши разработчики предлагают Android-приложение, которое после установки на устройстве будет перехватывать все звонки. Записанный софтом разговор отправляется на сервер, а там уже аудио преобразуется в текст.

Далее в ход вступает искусственный интеллект, анализирующий полученный текст и тему разговора. Если в диалоге присутствуют семейные дела или, например, погода, алгоритмы прекращают анализ записи.

Если же собеседник упоминает банки, счета, финансовые институты, начинается более глубокий анализ. На этом этапе ИИ пробует найти признаки, характерные для общения с мошенником.

«Чтобы научить нейронную сеть отличать диалог со злоумышленником, мы взяли два типа разговоров — безобидные и мошеннические. Для добавления в базу последних мы находим злоумышленников в Сети и записываем общение с ними», — объяснил «Известиям» один из разработчиков системы.

Специалисты даже специально отбирают разные виды мошенничества и схемы беседы. Именно так нейронную сеть учат обращать внимание на определённые слова.

Эксперт GIS, заместитель генерального директора — технический директор компании «Газинформсервис» Николай Нашивочников прокомментировал новую российскую разработку для борьбы с киберпреступниками:

«Успешная реализация такой разработки потребует больших денег и по-хорошему более глубокой проработки сценариев использования и архитектуры.

В целом методы машинного обучения применяются для указанных задач почти 10 лет. Особых прорывов пока не было, хотя это, безусловно, перспективные технологии. Отмечу отличие от user behavior (поведенческой аналитики). Коллеги используют машинное обучение с учителем, т.е. "тренируют" машину на обучающих выборках эффективно относить текущий набор текстовых данных к одному из двух классов: нормальный или зловредный. В user behavior основная фича — в построении нормального (базового) профиля поведения сущности и оценки отклонения от него. Существенное отклонение от профиля помечается как потенциальная атака. При этом используют в основном машинное обучение без учителя».

В R-Vision SGRC появилась возможность управления операционными рисками

R-Vision сообщила о расширении функциональности системы R-Vision SGRC. В обновлённой версии добавлены новые инструменты для управления рисками информационной безопасности и операционными рисками в целом. Новый функционал ориентирован прежде всего на организации с высокой регуляторной нагрузкой — банки, страховые и другие финансовые компании.

Для них управление рисками напрямую связано с устойчивостью бизнеса и выполнением требований регуляторов. Впервые обновлённую версию продукта представят на Уральском форуме «Кибербезопасность в финансах».

В основе изменений — подход, при котором каждый риск рассматривается как отдельный объект со своим жизненным циклом. Он фиксируется в момент выявления и обрабатывается индивидуально: с собственным воркфлоу, ответственными и сроками.

Такой механизм не зависит от общего цикла периодического пересмотра и позволяет выстраивать непрерывную работу с рисками. Если меняются исходные параметры или статус мероприятий по их снижению, система инициирует переоценку и направляет риск на дополнительный анализ.

При анализе система автоматически дополняет данные бизнес-контекстом, доступным в организации. Например, учитывается ценность актива и его роль в бизнес-процессах. Это реализовано через интеграции со смежными информационными системами и должно помочь более точно оценивать приоритеты.

Для упрощения запуска предусмотрены преднастроенный воркфлоу и типовая методика оценки операционных рисков, разработанная R-Vision. При необходимости её можно адаптировать под требования конкретной компании или создать собственную методику с помощью встроенного конструктора.

По сути, с расширением функциональности R-Vision SGRC выходит за рамки исключительно ИБ-рисков и становится инструментом для комплексного управления рисками на уровне всей организации.

RSS: Новости на портале Anti-Malware.ru