Российские эксперты разглядели риски использования GitHub Copilot хакерами

Российские эксперты разглядели риски использования GitHub Copilot хакерами

Российские эксперты разглядели риски использования GitHub Copilot хакерами

GitHub Copilot изначально создавался в помощь программистам, чтобы упростить работу с кодом. Однако специалисты в области кибербезопасности предупреждают, что основанный на нейросети сервис могут использовать авторы вредоносных программ.

Copilot, созданный GitHub на базе искусственного интеллекта, действует по принципу клавиатур на мобильных устройствах — дополняет строки и даже целые функции в коде.

Специалисты GitHub в конце июня представили этот сервис, а для его разработки потребовалась помощь OpenAI. Ожидается, что Copilot сможет существенно упростить девелоперам жизнь.

Как мы уже писали ранее, в процессе разработки сервиса специалисты тренировали его на миллиардах строк кода. И теперь, когда условный разработчик пишет код, GitHub Copilot выдаёт предложения, которыми можно воспользоваться для более продуктивного кодинга.

Парсинг закомментированных кусков помогает сервису понять, над чем именно разработчик работает в данный момент. На пример работы GitHub Copilot можно посмотреть здесь.

Российские эксперты в области кибербезопасности, слова которых передают «Известия», считают, что нововведение GitHub может пригодиться не только разработчикам софта, но и киберпреступникам. Во-первых, авторы вредоносного кода получают возможность писать его быстрее, во-вторых — наличие подобного сервиса предполагает появление новых создателей зловредов, поскольку эта процедура в целом упростилась.

Эксперт GIS, заместитель генерального директора — технический директор компании «Газинформсервис» Николай Нашивочников рассказал об опасности использования нового бота для программистов хакерами:

«С появлением автоматизированных средств разработки угрозы для безопасности приложений, несомненно, возрастают. Как мы видим, новые сервисы упрощают жизнь не только "белым" разработчикам, но и вирусописателям. Но кроме этой очевидной сентенции есть и другие вопросы, касающиеся информационной безопасности.

Следует учитывать, как проходит обучение сети, если «хакерам» удастся внедрить опасную конструкцию в систему "подсказок" Copilot и она начнёт предлагать разработчикам вставлять эту уязвимость в их код, в итоге мы можем получить более массовое распространение уязвимости.

Также специалисты говорят про возможность банальной кражи чужого кода. Примерно в 0,1% случаев код будет дословно взят из обучающей выборки. В остальных 99,9% случаев сервис использует обучающую выборку в качестве основы для синтеза чего-то нового. Граница не столь чётко определена, как хотелось бы GitHub».

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru