Незащищённый сервер Nissan слил исходный код внутренних разработок

Незащищённый сервер Nissan слил исходный код внутренних разработок

Незащищённый сервер Nissan слил исходный код внутренних разработок

Исходный код мобильных приложений и внутренних инструментов североамериканского представительства компании Nissan оказались в открытом доступе. Проблема в том, что японский автопроизводитель некорректно настроил один из своих Git-серверов.

Как объяснил швейцарский специалист Тилли Коттманн, сотрудники Nissan умудрились оставить открытый Git-сервер, доступ к которому можно было получить с помощью стандартной связки «имя пользователя-пароль» — admin-admin.

Коттманн изучил содержимое репозитория и выяснил, что на незащищённом сервере хранился исходный код следующих разработок автопроизводителя:

  • Мобильных приложений Nissan.
  • Nissan ASIST, инструмента для диагностики (частично).
  • Систем Dealer Business Systems / Dealer Portal.
  • Внутренней библиотеки.
  • Служб Nissan/Infiniti NCAR/ICAR.
  • Инструментов для поиска и удержания клиентов.
  • Инструментов для изучения рынка.
  • Маркетинговых инструментов.
  • Многих других внутренних и бэкенд-инструментов.

 

После того как информация о незащищённом сервере попала в Сеть, неизвестные начали распространять внутренние данные Nissan через торрент-ссылки в Telegram-каналах и на хакерских форумах. Представители японского автопроизводителя уже подтвердили факт утечки и сообщили, что компания расследует инцидент.

Более трех четвертей россиян не отличают нейросетевой контент от реального

Согласно исследованию агентств Spektr и СКОТЧ, 77% участников не смогли отличить изображения, созданные нейросетями, от реальных фотографий. В опросе приняли участие около 1000 человек. Респондентам в случайном порядке показывали пять изображений, из которых четыре были сгенерированы ИИ, а одно — подлинное.

Результаты исследования приводит РБК. Корректно определить сгенерированные изображения смогли лишь 23% опрошенных.

При этом в более молодых возрастных группах показатели оказались выше. Среди респондентов до 30 лет правильный ответ дали 30%, в группе 31–44 года — 25%.

В числе признаков «настоящего» фото участники называли убедительные детали, реалистичные свет и тени, а также естественную улыбку человека в кадре. Например, изображение с улыбающимся мужчиной чаще других считали реальным участники в возрасте 45–60 лет — 28% из них выбрали именно этот вариант.

Примечательно, что доля тех, кто ошибается при определении ИИ-контента, растёт. Согласно результатам исследования MWS, опубликованным летом 2025 года, правильно распознать сгенерированные изображения смогли более трети респондентов.

RSS: Новости на портале Anti-Malware.ru