Утёкшие в дарквеб данные карт тестируются в течение двух часов

Утёкшие в дарквеб данные карт тестируются в течение двух часов

Утёкшие в дарквеб данные карт тестируются в течение двух часов

Исследователь представил интересную статистику относительно слитых в Сеть данных банковских карт. Оказалось, что достоверность скомпрометированной платёжной информации довольно быстро проверяется различными киберпреступниками.

С того момента, как данные какой-либо карты появляются на нескольких сайтах соответствующей тематики, проходит буквально два часа до попытки осуществления микротранзакции — проверки актуальности.

Такой статистикой поделился специалист компании ThreatPipes Дэвид Гринвуд. Чтобы провести эксперимент, Гринвуд купил предоплаченную карту VISA, а затем попытался продать платёжную информацию на площадках дарквеба.

Однако, по словам Гринвуда, все оказалось не так просто:

«К сожалению, вы не можете просто взять и продать такого рода информацию в дарквебе. Сначала вам необходимо заработать соответствующую репутацию».

Тогда специалист решил пойти другим путём — предложить «скомпрометированные» данные бесплатно. Гринвуд поместил информацию настоящей карты в набор, состоящий из поддельных данных. Там была дата окончания срока действия, код CVV, а также адрес держателя.

В течение двух часов не происходило ровным счётом ничего. Затем исследователь зафиксировал микроплатеж, предназначенный для проверки валидности данных. Такие тесты, как правило, автоматические — выполняются ботами.

В результате Гринвуд смог сделать вывод, что информация любой слитой карты будет протестирована в течение двух часов после публикации в дарквебе.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Компании возвращают уволенных из-за ИИ сотрудников: ожидания не оправдались

Количество сотрудников, которых уволили из-за внедрения систем на основе искусственного интеллекта (ИИ), а затем вернули обратно, заметно растёт. По мнению аналитиков, это говорит о том, что ожидания от внедрения ИИ во многих компаниях оказались завышенными.

Такую тенденцию зафиксировали аналитики компании Visier, проанализировав данные о занятости 2,4 млн человек в 142 странах.

Доля сотрудников, уволенных после внедрения ИИ-систем и впоследствии возвращённых на работу, превысила прежний стабильный уровень в 5,3%, который сохранялся несколько лет.

Как отметила генеральный директор Visier Андреа Дерлер, такой результат связан с двумя факторами, о которых нередко забывают на старте проектов по внедрению высокоавтоматизированных систем.

Во-первых, ИИ способен выполнять отдельные функции, но не полноценные роли, которые выполняют сотрудники. Это требует тщательной настройки систем, а квалифицированных специалистов в этой области мало, и их услуги стоят дорого.

Во-вторых, многие руководители недооценивают затраты на создание инфраструктуры, необходимой для внедрения ИИ. Речь идёт о дополнительном оборудовании, расширении хранилищ данных и мерах по обеспечению кибербезопасности.

Нередко эти расходы оказываются выше, чем экономия на зарплатах уволенных сотрудников. По данным платформы Orgvue, в среднем затраты на внедрение ИИ превышают ожидаемую экономию примерно на 27%.

Похожие выводы, как отмечает издание Techspot, сделали исследователи Массачусетского технологического института (MIT). Согласно их данным, 95% компаний и организаций не получили измеримой финансовой отдачи от инвестиций в искусственный интеллект.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru