Утёкшие в дарквеб данные карт тестируются в течение двух часов

Утёкшие в дарквеб данные карт тестируются в течение двух часов

Утёкшие в дарквеб данные карт тестируются в течение двух часов

Исследователь представил интересную статистику относительно слитых в Сеть данных банковских карт. Оказалось, что достоверность скомпрометированной платёжной информации довольно быстро проверяется различными киберпреступниками.

С того момента, как данные какой-либо карты появляются на нескольких сайтах соответствующей тематики, проходит буквально два часа до попытки осуществления микротранзакции — проверки актуальности.

Такой статистикой поделился специалист компании ThreatPipes Дэвид Гринвуд. Чтобы провести эксперимент, Гринвуд купил предоплаченную карту VISA, а затем попытался продать платёжную информацию на площадках дарквеба.

Однако, по словам Гринвуда, все оказалось не так просто:

«К сожалению, вы не можете просто взять и продать такого рода информацию в дарквебе. Сначала вам необходимо заработать соответствующую репутацию».

Тогда специалист решил пойти другим путём — предложить «скомпрометированные» данные бесплатно. Гринвуд поместил информацию настоящей карты в набор, состоящий из поддельных данных. Там была дата окончания срока действия, код CVV, а также адрес держателя.

В течение двух часов не происходило ровным счётом ничего. Затем исследователь зафиксировал микроплатеж, предназначенный для проверки валидности данных. Такие тесты, как правило, автоматические — выполняются ботами.

В результате Гринвуд смог сделать вывод, что информация любой слитой карты будет протестирована в течение двух часов после публикации в дарквебе.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru