В Москве начали внедрять систему распознавания лиц

В Москве начали внедрять систему распознавания лиц

В Москве начали внедрять систему распознавания лиц

Столичные власти назвали положительными итоги эксперимента по подключению уличных камер видеонаблюдения к системе распознавания лиц. Однако ее повсеместное распространение под вопросом — это обойдется в миллиарды рублей.

​Как рассказал РБК источник на телекоммуникационном рынке, департамент информационных технологий (ДИТ) Москвы завершил пилотный проект по подключению уличных видеокамер к системе распознавания лиц. В рамках пилота анализировалось изображение с 1,5 тыс. камер, 95% из которых установлены во дворах и подъездах столицы. При этом использовалась технология компании NTechLab, пишет rbc.ru.

По его словам, результаты проекта оказались положительными — система позволила поймать преступников, которые долгое время находились в розыске. «С ее помощью можно будет не только повысить уровень безопасности в городе. Она позволит контролировать работу различных служб, например коммунальных», — сказал он.

Миллиарды на безопасность

Представитель NTechLab подтвердил РБК, что компания участвовала в проекте ДИТа, но отказался рассказать условия сотрудничества. Он считает, что наиболее эффективно вопросы безопасности будут решаться при повсеместном подключении камер подъездного видеонаблюдения в Москве (всего около 120 тыс. штук) к системе видеоаналитики NtechLab.

Агентство Bloomberg со ссылкой на главу ДИТа Артема Ермолаева сообщило, что внедрение системы с использованием всех камер, установленных в Москве, увеличит расходы города на систему видеонаблюдения в три раза, до примерно 15 млрд руб. в год, поэтому технологию намерены использовать выборочно.

Представитель ДИТа не ответил на вопросы РБК. Из пресс-релиза ДИТа следует, что к системе распознавания лиц подключались 160 тыс. видеокамер в столице.

Источник РБК, близкий к NTechLab, пояснил, что по условиям сотрудничества с ДИТом система одновременно анализировала видеопоток с 1,5 тыс. камер, при этом сами камеры можно было менять, подключая устройства из разных точек столицы.

В декабре 2016 года Ермолаев рассказывал РБК, что власти столицы в 2017 году начнут второй этап тестирования системы распознавания лиц для городских камер видеонаблюдения. По его словам, итоги первого испытания показали, что система оказалась слишком затратной.

«Камеры городского видеонаблюдения динамические: они двигаются вправо-влево, приближаются и удаляются. В таких условиях добиться даже распознавания 60–70% изображений крайне сложно. Результат в 30% уже космический», — отметил глава департамента. В ведомстве отмечали, что в 2015 году с помощью камер видеонаблюдения было раскрыто 1,7 тыс. преступлений, а москвичи подали 8 тыс. заявок на бронирование архива видеоматериалов, снятых камерами.

В России несколько компаний разрабатывают алгоритмы распознавания лиц. Три из них — NTechLab, 3DiVi и «Вокорд» — ранее были допущены к программе официального тестирования в категории «Распознавание лиц», проводимого Национальным институтом стандартов и технологий при Министерстве торговли США (NIST), что позволяет им участвовать в тендерах американских госструктур.

Один из основателей 3DiVi Дмитрий Морозов сообщил, что в конце прошлого года компания вела переговоры об участии в пилотном проекте в Москве, но дальше дело не пошло. «Нам было бы интересно участвовать в подобном проекте», — отметил Морозов. По его оценке, городу внедрение подобной системы повсеместно может обойтись в «миллиарды рублей», исходя из расчета минимум $100 (5843 руб.) на каждую подключаемую камеру.

По словам гендиректора VisionLabs Александра Ханина, компания знала о проекте ДИТа. «Но для нас это не самый приоритетный рынок. Мы работаем в основном с коммерческими структурами», — сказал Ханин. Он затруднился предположить, какой может быть цена контракта в будущем тендере ДИТа на внедрение системы распознавания лиц во всех камерах во дворах и подъездах Москвы.

Представитель «Вокорда» отказался от комментариев.

Объем мирового рынка распознавания лиц, по данным компании MarketsandMarkets, в 2016 году составлял $3,35 млрд, а к 2021 году должен вырасти до $6,84 млрд. Точных данных по объему российского рынка распознавания лиц нет, но Александр Ханин ранее оценивал объем заключенных контрактов на нем не более чем в несколько десятков миллионов долларов.

Linux-фреймворк DKnife годами следил за трафиком пользователей

Исследователи из Cisco Talos рассказали о ранее неизвестном вредоносном фреймворке под названием DKnife, который как минимум с 2019 года используется в шпионских кампаниях для перехвата и подмены сетевого трафика прямо на уровне сетевых устройств.

Речь идёт не о заражении отдельных компьютеров, а о компрометации маршрутизаторов и других устройств, через которые проходит весь трафик пользователей.

DKnife работает как инструмент постэксплуатации и предназначен для атак формата «атакующий посередине» («adversary-in-the-middle») — когда злоумышленник незаметно встраивается в сетевой обмен и может читать, менять или подсовывать данные по пути к конечному устройству.

Фреймворк написан под Linux и состоит из семи компонентов, которые отвечают за глубокий анализ пакетов, подмену трафика, сбор учётных данных и доставку вредоносных нагрузок.

 

По данным Talos, в коде DKnife обнаружены артефакты на упрощённом китайском языке, а сам инструмент целенаправленно отслеживает и перехватывает трафик китайских сервисов — от почтовых провайдеров и мобильных приложений до медиаплатформ и пользователей WeChat. Исследователи с высокой уверенностью связывают DKnife с APT-группировкой китайского происхождения.

Как именно атакующие получают доступ к сетевому оборудованию, установить не удалось. Однако известно, что DKnife активно взаимодействует с бэкдорами ShadowPad и DarkNimbus, которые уже давно ассоциируются с китайскими кибершпионскими операциями. В некоторых случаях DKnife сначала устанавливал подписанную сертификатом китайской компании версию ShadowPad для Windows, а затем разворачивал DarkNimbus. На Android-устройствах вредоносная нагрузка доставлялась напрямую.

 

После установки DKnife создаёт на маршрутизаторе виртуальный сетевой интерфейс (TAP) и встраивается в локальную сеть, получая возможность перехватывать и переписывать пакеты «на лету». Это позволяет подменять обновления Android-приложений, загружать вредоносные APK-файлы, внедрять зловреды в Windows-бинарники и перехватывать DNS-запросы.

Функциональность фреймворка на этом не заканчивается. DKnife способен собирать учётные данные через расшифровку POP3 и IMAP, подменять страницы для фишинга, а также выборочно нарушать работу защитных решений и в реальном времени отслеживать действия пользователей.

В список попадает использование мессенджеров (включая WeChat и Signal), картографических сервисов, новостных приложений, звонков, сервисов такси и онлайн-покупок. Активность в WeChat анализируется особенно детально — вплоть до голосовых и видеозвонков, переписки, изображений и прочитанных статей.

Все события сначала обрабатываются внутри компонентов DKnife, а затем передаются на командные серверы через HTTP POST-запросы. Поскольку фреймворк размещается прямо на сетевом шлюзе, сбор данных происходит в реальном времени.

RSS: Новости на портале Anti-Malware.ru