Более 40% сайтов промышленных компаний уязвимы для хакерских атак

Более 40% сайтов промышленных компаний уязвимы для хакерских атак

Более 40% сайтов промышленных компаний уязвимы для хакерских атак

Более половины современных сайтов содержат критически опасные уязвимости, которые позволяют злоумышленникам проводить различные атаки, включая отказ в обслуживании и кражу персональных данных. Такие выводы содержатся в исследовании компании Positive Technologies на основе работ по анализу защищенности веб-приложений за 2016 год.

Как следует из отчета, практически все исследованные веб-приложения (94%) позволяют осуществлять атаки на пользователей, и неудивительно ― половина уязвимостей, вошедших в десятку самых распространенных, используются именно для таких атак. Доступ к персональным данным был получен в 20% приложений, обрабатывающих такие данные (включая сайты банков и государственных организаций).

Больше всего веб-приложений с уязвимостями высокого уровня риска найдено среди сайтов телекоммуникационных компаний (74%). Если же оценивать уровень защищенности в зависимости от возможных последствий, то хуже всего ситуация в промышленности (43% сайтов отличаются крайне низкой степенью защищенности) и в электронной коммерции (34%).

Исследователи отмечают, что уязвимости публичных сайтов по-прежнему являются популярным способом проникновения во внутреннюю инфраструктуру компании: каждое четвертое веб-приложение позволяет проводить такие атаки. Кроме того, четверть веб-приложений содержат уязвимости, позволяющие стороннему злоумышленнику получить доступ к базам данных.

Еще одно важное наблюдение ― веб-приложения, находящиеся в процессе эксплуатации, оказались более уязвимыми, чем тестовые: критически опасные уязвимости выявлены в 55% продуктивных систем и в 50% тестовых систем.

«Это свидетельствует о том, что необходимо проводить анализ защищенности не только в процессе разработки, но и после внедрения в эксплуатацию, ― комментирует Евгений Гнедин, руководитель отдела аналитики информационной безопасности Positive Technologies. ― Для защиты уже эксплуатируемых приложений рекомендуется использовать межсетевые экраны уровня приложений (web application firewalls)».

В исследовании также представлено сравнение эффективности различных методов анализа защищенности приложений («белый ящик» против «черного ящика») и приведены примеры выявления уязвимостей автоматизированным анализатором кода PT Application Inspector.

«Анализ исходного кода показывает намного более высокие результаты, чем исследование защищенности без доступа к коду приложения, ― отмечает Евгений Гнедин. ― Кроме того, тестирование исходного кода в процессе разработки позволяет значительно повысить защищенность конечного приложения. Для анализа исходного кода на различных стадиях разработки целесообразно применять автоматизированные средства, поскольку это позволяет выявить максимальное число ошибок в кратчайшее время».

Engram от DeepSeek: как LLM научили вспоминать, а не пересчитывать

Команда DeepSeek представила новый модуль Engram, который добавляет в трансформеры то, чего им давно не хватало, — встроенную память для быстрого извлечения знаний. Идея проста, но эффектная: вместо того чтобы снова и снова пересчитывать одни и те же локальные паттерны, модель может мгновенно «вспоминать» их через O(1)-lookup и тратить вычисления на более сложные задачи — рассуждения и дальние зависимости.

Engram работает не вместо Mixture-of-Experts (MoE), а вместе с ним. Если MoE отвечает за условные вычисления, то Engram добавляет вторую ось масштабирования — условную память.

По сути, это современная версия классических N-грамм, переосмысленная как параметрическая память, которая хранит устойчивые шаблоны: частые фразы, сущности и другие «статичные» знания.

Технически Engram подключается напрямую к трансформерному бэкбону DeepSeek. Он построен на хешированных таблицах N-грамм с мультихед-хешированием, лёгкой свёрткой по контексту и контекстно-зависимым гейтингом, который решает, сколько памяти «подмешать» в каждую ветку вычислений. Всё это аккуратно встраивается в существующую архитектуру без её радикальной переделки.

 

На больших моделях DeepSeek пошла ещё дальше. В версиях Engram-27B и Engram-40B используется тот же трансформерный бэкбон, что и у MoE-27B, но часть параметров перераспределяется: меньше маршрутизируемых экспертов — больше памяти Engram. В результате Engram-27B получает около 5,7 млрд параметров памяти, а Engram-40B — уже 18,5 млрд, при этом число активируемых параметров и FLOPs остаётся тем же.

Результаты предобучения на 262 млрд токенов выглядят убедительно. При одинаковом числе активных параметров Engram-модели уверенно обходят MoE-базу: снижается задержка, растут показатели на задачах знаний и рассуждений. Например, MMLU увеличивается с 57,4 до 60,4, ARC Challenge — с 70,1 до 73,8, BBH — с 50,9 до 55,9. Улучшения есть и в коде, и в математике — от HumanEval до GSM8K.

 

Отдельно исследователи посмотрели на длинный контекст. После расширения окна до 32 768 токенов с помощью YaRN Engram-27B либо сравнивается с MoE-27B, либо превосходит его  Причём иногда Engram достигает этого при меньших вычислительных затратах.

Механистический анализ тоже говорит в пользу памяти. Варианты с Engram формируют «готовые к предсказанию» представления уже на ранних слоях, а по CKA видно, что неглубокие слои Engram соответствуют гораздо более глубоким слоям MoE. Проще говоря, часть «глубины» модель получает бесплатно, выгружая рутину в память.

Авторы подытоживают: Engram и MoE не конкурируют, а дополняют друг друга. Условные вычисления хорошо справляются с динамикой и рассуждениями, а условная память — с повторяющимися знаниями. Вместе они дают более эффективное использование параметров и вычислений без ломки архитектуры.

RSS: Новости на портале Anti-Malware.ru