Выпущена система фильтрации спама Rspamd 1.6

Выпущена система фильтрации спама Rspamd 1.6

Выпущена система фильтрации спама Rspamd 1.6

Представлен релиз системы фильтрации спама Rspamd 1.6, предоставляющей средства для оценки сообщений по различным критериям, включая правила, статистические методы и чёрные списки, на основе которых формируется итоговый вес сообщения, используемый для принятия решения о необходимости блокировки.

Rspamd поддерживает практически все возможности, реализованные в SpamAssassin, и имеет ряд особенностей, позволяющих фильтровать почту в среднем в 10 раз быстрее, чем SpamAssassin, а также обеспечивать лучшее качество фильтрации. Код системы написан на языке Си и распространяется под лицензией BSD.

Rspamd построен с использованием событийно-ориентированной архитектуры (Event-driven) и изначально рассчитан на применение в высоконагруженных системах, позволяя обрабатывать сотни сообщений в секунду, пишет opennet.ru. Правила для выявления признаков спама отличаются высокой гибкостью и в простейшем виде могут содержать регулярные выражения, а в более сложных ситуациях могут оформляться на языке Lua. Расширение функциональности и добавление новых типов проверок реализуется через модули, которые могут создаваться на языках Си и Lua. Например, доступны модули для проверки отправителя с использованием SPF, подтверждения домена отправителя через DKIM, формирования запросов в списки DNSBL. Для упрощения настройки, создания правил и отслеживания статистики предоставляется административный web-интерфейс.

Основные новшества:

  • Встроенная поддержка протокола Milter, позволяющая обойтись без надстройки Rmilter, развитие которой прекращено. Встроенный Milter может использоваться в двух режимах - Proxy для крупных систем и Self-scan для небольших конфигураций (данный режим отличается существенным упрощением настройки). Режим Proxy требует отдельного сканирующего слоя, в то время как в режиме "self-scan" обработчик rspamd_proxy сканирует сообщение собственными силами и взаимодействует с MTA, такими как Postfix и Sendmail, напрямую при помощи протокола Milter;
  • Полная поддержка цифровых подписей и меток ARC (Authenticated Received Chain), позволяющих гарантировать, что сообщение было подписано и затем перенаправлено через ряд заслуживающих доверия шлюзов. Реализованный в Rspamd модуль ARC поддерживает как верификацию, так и создание подписей для исходящих сообщений. Настройка модуля ARC очень похожа на модуль dkim_signing;
  • Новая модель хранения статистики в БД Redis, упрощающая выборку необходимых токенов и определение времени их жизни. В выпуске Rspamd 1.6 новая схема хранения статистики позиционируется как экспериментальная, но в будущем выпуске она будет включена по умолчанию, а также будут предоставлены инструменты для преобразования старого хранилища без потери данных;
  • Задействован новый алгоритм определения устаревших записей для внутренних кэшей. Вместо ранее применяемого классического алгоритма LRU (Least Recently Used) в ноой версии задействован алгоритм LFU ( Least Frequently Used), при котором фактором актуальности записи является не последнее обращение, а частота обращений. При новом алгоритме в кэше дольше сохраняются наиболее часто используемые записи, что положительно отражается на производительности кэширования;
  • В модуле DMARC появилась поддержка отправки отчётов для определённых доменов и правил. Администратору предоставлены гибкие возможности по настройке содержимого отчётов и частоты их отправки. Отчёты позволяют увеличить качество взаимодействия с ресурсами, использующими DMARC (например, paypal.com), в том числе дают возможность отследить и отреагировать на некоторые попытки фишинга;
  • Представлен новый плагин spamtrap, позволяющий выхватить письмо со спамом по заданным признакам, например можно использовать для обучения фильтров на основе работы ловушек спама (honeypots);
  • Внесена большая порция улучшений в модуль url_redirector, выполняющий проверку пробросов на спамерские ссылки, скрытые через применение сервисов редиректа URL;
  • В прокси добавлена поддержка сжатия данных при отправке сообщений на уровень сканирования;
  • Внесена порция оптимизаций производительности: для регулярных выражений Hfilter задействована библиотека hyperscan, обеспечено кэширования хэшей тел сообщений DKIM, добавлено кэширование результатов работы алгоритма стемминга Snowball.

Поддельный пакет для WhatsApp из NPM сливает сообщения и контакты

В экосистеме JavaScript обнаружили очередную, но особенно неприятную атаку на цепочку поставок. В каталоге NPM более полугода распространялся вредоносный пакет lotusbail, который выдавал себя за библиотеку для работы с WhatsApp API (принадлежит признанной в России экстремистской организации и запрещённой корпорации Meta) — и при этом тихо воровал переписку, контакты и учётные данные пользователей.

На находку обратили внимание исследователи из Koi Security, опубликовав подробный технический разбор. К моменту обнаружения пакет успели скачать более 56 тысяч раз, что делает ситуацию далеко не нишевой.

В отличие от многих зловредов в NPM, которые ломаются или выдают себя странным поведением, lotusbail был практически идеальной подделкой. Его авторы просто склонировали популярную библиотеку @whiskeysockets/baileys, которая используется для работы с WhatsApp Web через WebSocket, и аккуратно встроили в неё вредоносный код.

 

Снаружи всё выглядело легитимно: приложения на базе lotusbail спокойно отправляли и получали сообщения. Но параллельно библиотека:

  • перехватывала все входящие и исходящие сообщения;
  • собирала медиафайлы;
  • вытаскивала списки контактов с номерами телефонов;
  • сохраняла WhatsApp-сессии, токены и коды привязки устройств.

 

Причём перехватывались не только новые сообщения, но и исторические данные, доступные через API.

Самая опасная часть — использование механизма «сопряжение устройств» в WhatsApp. В коде пакета был зашит жёстко заданный, зашифрованный AES код привязки, который незаметно подключал устройство злоумышленника к аккаунту жертвы.

 

В результате атакующий получал постоянный доступ к WhatsApp-аккаунту, который сохранялся даже после удаления вредоносного пакета из проекта.

Проще говоря, удалить lotusbail недостаточно. Чтобы полностью закрыть дыру, жертве нужно вручную отвязать все устройства в настройках WhatsApp.

Собранные данные дополнительно шифровались с помощью кастомной реализации RSA. Это не имело отношения к сквозному шифрованию WhatsApp — цель была другой: спрятать утечки от систем мониторинга и сетевых средств защиты.

Эксперты отмечают, что атака отлично иллюстрирует главную проблему экосистемы open source: функциональность маскирует вредоносную логику. NPM остаётся одной из самых привлекательных целей для атак на цепочки поставок — из-за масштаба, доверия разработчиков и низкого порога публикации пакетов.

Ранее в новом докладе властей Великобритании прозвучала мысль, что разработка зашифрованных мессенджеров вроде WhatsApp теоретически может считаться «враждебной деятельностью».

RSS: Новости на портале Anti-Malware.ru