Balabit выпустила Blindspotter

Balabit представил продукт для поиска аномалий в поведении пользователей

Balabit представил продукт для поиска аномалий в поведении пользователей

Венгерская компания Balabit объявила о выпуске нового продукта Blindspotter, который предназначен для выявления аномалий в поведении пользователей. Предполагается, что эти аномалии вызваны либо деятельностью вредоносного ПО, либо перехватом идентификационной информации - в любом случае целью этой деятельности является детектирование неизвестных, а, возможно, и целенаправленных атак.

Blindspotter - это программный комплекс, который может получать информацию из различных источников: коллектора системных журналов Syslog-NG или построенного на его основе программно-аппаратного комплекса Syslog-NG Store Box, аналитических инструментов SIEM, модулей аутентификации пользователей или каталогов LDAP. Продукт впервые был представлен на выставке InfoSecurity в Лондоне в прошлом году, а сейчас стал доступен для коммерческого заказа в том числе и в России.

Система оценивает такие параметры пользовательской активности как время подключения, адреса доступа, скорость работы с клавиатурой, параметры операционной системы, используемые серверы и приложения, производительность. В частности, если человек слишком быстро набирает ответы или ему требуется очень мало времени на анализ информации, то у системы может возникнуть подозрение, что работает программный робот. Эти параметры анализируются и визуализируются для того, чтобы администраторы безопасности могли выявились и расследовать аномальное поведение пользователей, такое как запуск необычных для них программ или вход в систему в необычное время. В частности, с помощью Blindspotter можно определить момент, когда под именем одного пользователя в системе авторизовался другой, когда легальный пользователь начал злоупотреблять полномочиями и собирать сведения для организации их утечки, или когда легальный системный администратор случайно запустил вредоносный скрипт. Причём, продукт фиксирует такие события в реальном времени и сообщает о их обнаружении администратору безопасности.

По словам Питера Джанджоши, менеджера Balabit по Blindspotter, этот продукт задумывался как средство управления различного типа операционными рисками. То есть теоретически его можно использовать для выявления подозрительного поведения клиентов, для чего достаточно получать сведения из специализированных приложений, таких как CRM или службы технической поддержки. В результате, можно будет выявлять различные виды мошенничества со стороны клиентов и оценивать риск проведения несанкционированных операций. Продукт позволяет разрешать постепенные, но не опасные отклонения в поведении, а вот сильные и опасные - блокировать. "Если вы не можете определить насколько опасны действия пользователей, то лучше поставить для них пониженный приоритет," - рекомендует Питер Джонджоши.

По его словам Blindspotter будет развиваться как платформа для построения решения управления рисками. Со временем планируется предложить партнёрам разработать модули взаимодействия с продуктом, которые как раз и позволили бы добавлять в систему сведения из различных приложений. API не будет открытым, но партнёры смогут получить к нему доступ и реализовать взаимодействие со своими продуктами. Прежде всего такой продукт может быть востребован в финансовой индустрии или для обеспечения непрерывности бизнеса, то есть в тех компаниях, которые сильно зависят от работоспособности ИТ-системы и имеют много пользователей.

ГК Солар запатентовала технологию выявления ботов на уровне HTTPS

ГК «Солар» получила патент на технологию, которая помогает автоматически отличать опасные бот-запросы от действий реальных пользователей ещё на этапе подключения к веб-серверу. Патент был выдан Роспатентом 27 ноября 2025 года. Речь идёт о механизме анализа HTTPS-соединений, который оценивает вероятность того, что запрос был отправлен ботом.

В основе разработки — математическая модель, обученная на статистике поведения легитимных пользователей и автоматических скриптов. Если система считает запрос подозрительным, пользователю предлагается пройти дополнительную проверку. Если нет — соединение устанавливается без задержек.

Подход позволяет отсеивать нежелательную активность до загрузки страницы, не перегружая сайт и не мешая реальным посетителям. Это особенно актуально для интернет-магазинов и других онлайн-ресурсов малого и среднего бизнеса, где даже кратковременные сбои могут напрямую отражаться на выручке.

По оценке разработчиков, технология помогает бороться сразу с несколькими распространёнными проблемами. Среди них — автоматизированный сбор данных, когда боты массово выгружают информацию о товарах и ценах, искажают аналитику и создают почву для мошенничества. Также система позволяет выявлять накрутку кликов и просмотров, автоматические переборы логинов и паролей, разведку перед атаками и попытки перегрузить сайт бот-DDoS-трафиком.

Как поясняют в «Соларе», ключевая идея заключалась в том, чтобы анализировать не содержимое запроса, а его технические параметры, характерные именно для автоматических инструментов. Такой подход остаётся эффективным даже в условиях, когда боты всё лучше маскируются под поведение обычных пользователей.

По словам директора продукта Solar Space Артёма Избаенкова, сегодня на ботов приходится уже более половины мирового интернет-трафика, и значительная часть этой активности связана с вредоносными сценариями. Использование нейросетевой модели позволяет снизить влияние человеческого фактора и повысить точность фильтрации.

Руководитель направления развития облачных технологий ГК «Солар» Дмитрий Лукин отмечает, что разработка выросла из практических задач защиты заказчиков. Основной целью было научиться отсеивать замаскированных ботов на самом раннем этапе, ещё до обработки запроса веб-приложением. После тестирования и доработки модель легла в основу патентованного решения.

В компании добавляют, что технология уже применяется в линейке решений Solar Space — как в облачном формате, так и в развёртываниях on-premise.

RSS: Новости на портале Anti-Malware.ru