Пароли к Windows XP стали легкой добычей для самодельного кластера

Пароли к Windows XP стали легкой добычей для самодельного кластера

Авторитетный специалист по информационной безопасности Джереми Госни (Jeremi Gosney), также известный под псевдонимом «epixoip», построил и продемонстрировал собственный самодельный кластер из пяти серверов. С помощью собственной утилиты HashCat автор смог взломать пароль к ОС Windows XP за шесть минут.

Работа нового кластера была показана на конференции Passwords^12 в г. Осло (Норвегия). Для написания распределенного алгоритма подбора паролей Госни применил язык программирования OpenCL, изначально предназначенный для параллельных вычислений на процессорах общего назначения и на графических процессорах. Вместе с языком OpenCL была применена платформа VCL (Virtual OpenCL). Вся эта программная связка вместе с утилитой HashCat запущена на комплексе из пяти серверов высотой 4U, в которых установлено 25 графических ускорителей AMD Radeon. Передачу данных между узлами кластера осуществляет коммутационная панель Infiniband с пропускной способностью 10 Гбит/с.

Кластер Госни предлагает новый уровень вскрытия паролей путем подбора и эффективно справляется даже с самыми сложными из них, если те шифруются такими слабыми алгоритмами, как в системах LM и NTLM компании Microsoft. В ходе проведенного теста кластер смог обрабатывать 348 миллиардов хэш-кодов к паролям NTLM в секунду. Взлом пароля осуществляется с помощью прямого перебора и словаря. Пароль к Windows XP из 14 символов, хэшированный по системе LM, был подобран всего за шесть минут. Как пояснил сам разработчик кластера, технология LM используется в среде WinXP и переводит все пароли длиной до 14 символов в символы верхнего регистра, а потом разбивает их на две строки по 7 символов перед хэшированием. В итоге для взлома в большинстве случаев нужно перебрать «всего» 69^7 комбинаций. Для паролей NTLM скорость перебора обеспечивает вскрытие любого пароля из 8 символов за 5,5 часов, сообщает soft.mail.ru.

На самом деле, системы вроде описываемого кластера не подходят для взлома в режиме онлайн – они более полезны для офлайн-атак, когда выполняется вскрытие шифрованной базы паролей, полученной в результате кражи или утечки. В таких случаях время взлома не имеет решающего значения, зато на первый план выходят аппаратные и программные ограничения. Кроме всего прочего, новый «самодельный» кластер из графических процессоров можно использовать для взлома более сложных алгоритмов хэширования. Так, перебор хэш-кодов MD5 выполняется на скорости 180 млрд попыток в секунду, SHA1 — 63 млрд в секунду. Так называемые алгоритмы «медленного хэширования» оказываются более устойчивыми: для алгоритма bcrypt (05) и sha512crypt скорость перебора составляет 71 000 и 364 000 попыток в секунду соответственно.

Как говорит сам разработчик нового кластера, сначала он пытался использовать кластеры из обычных процессоров, потом переключился на графические процессоры. Тем не менее, на начальной стадии решено было устанавливать максимальное число графических процессоров в каждый сервер, чтобы меньше заботиться о кластеризации и перераспределении нагрузки. В апреле этого года исследования зашли в тупик, поскольку кластеризованный гипервизор VMware не позволял создать виртуальную машину, охватывающую все узлы кластера. Госни хотел построить из пяти серверов по 8 процессоров в каждом одну виртуальную машину на 40 процессоров, но это было невозможно.

Трудности в кластеризации процессоров общего назначения привели Госни к пока малоизвестной платформе VCL и одному из ее создателей, профессору Амнону Бараку (Amnon Barak), который в 70-х годах прошлого века стоял у истоков распределенной операционной системы MOSIX. Профессора пришлось долго убеждать, что будущая система не ставит своей целью превращение мира в один большой ботнет. В итоге Барак согласился устранить некоторые недоработки технологии VCL, обеспечив простое и полностью автоматическое перераспределение нагрузки в кластере из графических процессоров. Теоретически технология VCL в нынешнем виде может обслуживать кластер из 128 графических процессоров AMD.

Стоит заметить, что Джереми Госни далеко не новичок в искусстве вскрытия паролей. Летом этого года, когда произошла утечка 6,4 млн шифрованных пользовательских паролей из сервиса Linkedin, Госни со своим коллегой стали одним из первых, кому удалось взломать их. По оценкам сторонних экспертов, им удалось подобрать 90-95 % из всех похищенных паролей.

Сейчас Госни собирается использовать свой кластер для коммерческих целей. В мире уже существует несколько сервисов, где за определенную плату можно проверить стойкость паролей. Кластер от Госни может стать еще одним из таких сервисов, где клиенты смогут либо арендовать машинное время, либо проводить проверочный взлом паролей. Также кластер может использоваться для платного аудита безопасности доменов. Как говорит сам автор: «Я слишком много вложил в этот проект, чтобы не попытаться получить какую-нибудь отдачу».

Трояны-кликеры Android.Phantom используют ML и стриминг с помощью WebRTC

Компания «Доктор Веб» предупреждает о появлении новых Android-троянов, предназначенных для накрутки рекламных кликов. Новобранцы необычны тем, что для выполнения своих задач используют машинное обучение и видеотрансляции.

Представители семейства, условно названного Android.Phantom, распространяются через репаки игр и моды популярных приложений.

Несколько троянизированных игровых программ были обнаружены в официальном магазине Xiaomi — GetApps:

  • Creation Magic World (более 32 тыс. загрузок);
  • Cute Pet House (>34 тыс.);
  • Amazing Unicorn Party (>13 тыс.);
  • Академия мечты Сакура (>4 тыс.);
  • Theft Auto Mafia (>60 тыс.);
  • Open World Gangsters (>11 тыс.).

Во всех случаях разработчиком числится китайская компания Shenzhen Ruiren Technology Co., Ltd. Вредоносная составляющая, как выяснилось, была добавлена с обновлением приложений и запускается в параллель с донорским кодом.

 

Первые вредоносные апдейты были опубликованы в конце сентября. Анализ внедренного трояна (Android.Phantom.2.origin) показал, что он может работать в двух режимах: signaling и phantom.

В последнем случае зловред незаметно для жертвы использует встроенный браузер на основе WebView и по команде с C2-сервера загружает целевые сайты для клик-фрода, а также файл JavaScript с готовым сценарием и ML-фреймворком TensorFlow для выявления нужных элементов страниц и автоматизации процесса.

ИИ-модель для TensorFlow загружается с внешнего сервера в директорию установленного приложения. Для защиты C2-коммуникаций используется шифрование (AES-ECB).

В режиме signaling троян использует виртуальный экран и делает скриншоты. Он также использует WebRTC для прямого подключения к своему серверу и запускает видеотрансляцию реального времени, что позволяет оператору удаленно управлять браузером: кликать, скролить, осуществлять ввод в веб-формы.

В середине октября в каталоге Xiaomi GetApps появилось еще одно обновление: в троянизированные игры бы добавлен модуль Android.Phantom.5. На поверку довесок оказался дроппером с встроенной полезной нагрузкой Android.Phantom.4.origin.

Последний состоит из двух идентичных модулей, привязанных к разным внешним источникам, и обеспечивает загрузку менее замысловатых кликеров (просто грузят сайты в WebView и имитируют действия реального посетителя), а также библиотеки с Java API, необходимой для использования WebRTC на Android.

Исследователи обнаружили и другие источники распространения Android.Phantom: сайты Spotify Plus и Pro, Apkmody, Moddroid, их телеграм-каналы, а также серверы Discord, админы которых предлагают сомнительные ссылки для скачивания модов.

 

Анализ троянизированных версий Deezer (аналог Spotify) выявил еще двух представителей нового зловредного семейства: загрузчика Android.Phantom.1.origin и шпиона Android.Phantom.5.origin, собирающего информацию о зараженном устройстве (номер телефона, местоположение, список установленных программ и т. п.).

RSS: Новости на портале Anti-Malware.ru