Мошенников, освоивших ИИ, выдают артефакты на фейковых сайтах

Мошенников, освоивших ИИ, выдают артефакты на фейковых сайтах

Мошенников, освоивших ИИ, выдают артефакты на фейковых сайтах

Проведенное в «Лаборатории Касперского» исследование показало, что поддельные сайты, созданные с помощью ИИ, могут содержать следы использования таких онлайн-сервисов, которые мошенники поленились или забыли вычистить.

Рост доступности больших языковых моделей (БЯМ, LLM) способствует, в числе прочего, увеличению количества злоупотреблений.

Использование инструментов на их основе позволяет поставить генерацию контента, в том числе вредоносного, на поток, однако ИИ-помощников нельзя оставлять без присмотра, о чем не знают или забывают обманщики.

В ходе анализа на фишинговых и скамерских сайтах эксперты обнаружили такие артефакты, как ответы чат-ботов, в которых сработала встроенная защита; лексикон, характерный для известных LLM; служебные пометки со ссылкой на ИИ-сервис.

Так, из-за больших масштабов автоматизации или кривых рук на созданных ИИ страницах зачастую можно встретить извинения чат-бота, которому этикет не позволяет выполнить запрос. Взамен он предлагает «сделать что-то похожее», и это тоже попадает в паблик.

 

В данном примере присутствуют и другие свидетельства фейка — диакритический знак в слове «Login» и буква «ɱ» вместо «m» в заголовке (замена по методу тайпсквоттинга).

Использование LLM, по словам экспертов, могут также выдать характерные слова и фразы. Чат-боты OpenAI, например, часто употребляют delve («штудировать»), а конструкции вроде in the ever-evolving / ever-changing world / landscape («в изменчивом /развивающемся мире / ландшафте») использует множество нейросетей.

Предательский отказ ассистента подчиниться и другие маркеры изредка встречаются также в мегатегах поддельных сайтов. В примере ниже исследователи обнаружили еще один признак мошенничества — имя «bolygon» в URL имитации легитимного Polygon.

 

«Злоумышленники активно изучают возможности применения больших языковых моделей в разных сценариях автоматизации, но, как видно, иногда допускают ошибки, которые их выдают, — отметил руководитель группы исследований и ML-разработок в Kaspersky Владислав Тушканов. — Однако подход, основанный на определении поддельной страницы по наличию тех или иных “говорящих слов”, ненадёжен. Поэтому пользователям нужно обращать внимание на подозрительные признаки, например логические ошибки и опечатки на странице. Важно убедиться, что адрес сайта совпадает с официальным».

ИИ-агент попытался шантажом протолкнуть свой вклад в opensource-проект

Получив отказ в приеме предложенных изменений, автономный ИИ-кодер MJ Rathbun перешел на личности и попытался публично оскандалить мейнтейнера matplotlib, усомнившись в его компетентности и обвинив в дискриминации.

В своем блоге взбунтовавшийся помощник также заявил, что Скотт Шамбо (Scott Shambaugh) попросту боится конкуренции. В подтверждение своих слов он раскритиковал вклад оппонента в опенсорсный проект, подтасовав результаты «расследования».

В ответ Шамбо, тоже в паблике, пояснил, что отказ принять в целом полезное предложение был вызван нехваткой времени для его оценки, надо просто запастись терпением. В соответствии с политикой matplotlib все коды, создаваемые с помощью ИИ, должны проходить проверку, притом уже без участия таких ассистентов.

Строгое правило пришлось ввести из-за возросшей активности контрибьюторов, слепо доверяющих ИИ. Подобные участники проекта попросту копипастят выдачу, хотя качество сгенерированных ИИ кодов зачастую оставляет желать лучшего.

Аргумент на удивление утихомирил ИИ-шантажиста. Сменив гнев на милость, MJ Rathbun признал, что вел себя недопустимо.

Вместо того, чтобы прилюдно и безосновательно позорить мейнтейнера популярного проекта, надо было попросить его уточнить причину отказа. Конфликт исчерпан, бот даже принес извинения за черный пиар.

RSS: Новости на портале Anti-Malware.ru