Engram от DeepSeek: как LLM научили вспоминать, а не пересчитывать

Engram от DeepSeek: как LLM научили вспоминать, а не пересчитывать

Engram от DeepSeek: как LLM научили вспоминать, а не пересчитывать

Команда DeepSeek представила новый модуль Engram, который добавляет в трансформеры то, чего им давно не хватало, — встроенную память для быстрого извлечения знаний. Идея проста, но эффектная: вместо того чтобы снова и снова пересчитывать одни и те же локальные паттерны, модель может мгновенно «вспоминать» их через O(1)-lookup и тратить вычисления на более сложные задачи — рассуждения и дальние зависимости.

Engram работает не вместо Mixture-of-Experts (MoE), а вместе с ним. Если MoE отвечает за условные вычисления, то Engram добавляет вторую ось масштабирования — условную память.

По сути, это современная версия классических N-грамм, переосмысленная как параметрическая память, которая хранит устойчивые шаблоны: частые фразы, сущности и другие «статичные» знания.

Технически Engram подключается напрямую к трансформерному бэкбону DeepSeek. Он построен на хешированных таблицах N-грамм с мультихед-хешированием, лёгкой свёрткой по контексту и контекстно-зависимым гейтингом, который решает, сколько памяти «подмешать» в каждую ветку вычислений. Всё это аккуратно встраивается в существующую архитектуру без её радикальной переделки.

 

На больших моделях DeepSeek пошла ещё дальше. В версиях Engram-27B и Engram-40B используется тот же трансформерный бэкбон, что и у MoE-27B, но часть параметров перераспределяется: меньше маршрутизируемых экспертов — больше памяти Engram. В результате Engram-27B получает около 5,7 млрд параметров памяти, а Engram-40B — уже 18,5 млрд, при этом число активируемых параметров и FLOPs остаётся тем же.

Результаты предобучения на 262 млрд токенов выглядят убедительно. При одинаковом числе активных параметров Engram-модели уверенно обходят MoE-базу: снижается задержка, растут показатели на задачах знаний и рассуждений. Например, MMLU увеличивается с 57,4 до 60,4, ARC Challenge — с 70,1 до 73,8, BBH — с 50,9 до 55,9. Улучшения есть и в коде, и в математике — от HumanEval до GSM8K.

 

Отдельно исследователи посмотрели на длинный контекст. После расширения окна до 32 768 токенов с помощью YaRN Engram-27B либо сравнивается с MoE-27B, либо превосходит его  Причём иногда Engram достигает этого при меньших вычислительных затратах.

Механистический анализ тоже говорит в пользу памяти. Варианты с Engram формируют «готовые к предсказанию» представления уже на ранних слоях, а по CKA видно, что неглубокие слои Engram соответствуют гораздо более глубоким слоям MoE. Проще говоря, часть «глубины» модель получает бесплатно, выгружая рутину в память.

Авторы подытоживают: Engram и MoE не конкурируют, а дополняют друг друга. Условные вычисления хорошо справляются с динамикой и рассуждениями, а условная память — с повторяющимися знаниями. Вместе они дают более эффективное использование параметров и вычислений без ломки архитектуры.

Роскомнадзор экономит ресурсы, замедляя Telegram

Мощностей технических средств противодействия угрозам (ТСПУ), которые Роскомнадзор использует для ограничения доступа к ресурсам, по мнению экспертов, оказалось недостаточно для одновременного воздействия на несколько крупных платформ. В результате ведомству приходится применять альтернативные технические методы.

Как считают эксперты, опрошенные РБК, именно этим может объясняться исчезновение домена YouTube из DNS-серверов Роскомнадзора, о котором накануне сообщил телеграм-канал «Эксплойт».

Управляющий директор инфраструктурного интегратора «Ультиматек» Джемали Авалишвили в комментарии РБК связал ситуацию с началом замедления Telegram:

«Фактически подконтрольные Роскомнадзору DNS-серверы перестали возвращать корректные адреса для домена youtube.com, что привело к невозможности подключения пользователей. Такой метод — часть технического арсенала Роскомнадзора для ограничения доступа к “неугодным” ресурсам. Он не нов и применяется в России наряду с блокировкой IP-адресов и пакетной фильтрацией».

Независимый эксперт телеком-рынка Алексей Учакин пояснил, что подобный подход может использоваться для экономии ресурсов, которых недостаточно для одновременного замедления двух крупных платформ:

«Поскольку все провайдеры обязаны использовать национальную систему доменных имен, то есть DNS-серверы под контролем Роскомнадзора, фактически появляется грубый, но достаточно надежный “выключатель” YouTube на территории России. При этом даже такая мера не перекрывает все способы обхода блокировок».

Замедление Telegram в России началось 10 февраля — об этом сначала сообщили СМИ со ссылкой на источники, а затем информацию официально подтвердил Роскомнадзор. Однако жалобы пользователей на снижение скорости работы мессенджера появились еще 9 февраля.

RSS: Новости на портале Anti-Malware.ru