Российские учёные ускорили обучение нейросетей в распределённых системах

Российские учёные ускорили обучение нейросетей в распределённых системах

Российские учёные ускорили обучение нейросетей в распределённых системах

Российские исследователи из Центра практического искусственного интеллекта Сбербанка и МФТИ предложили метод, который помогает снизить нагрузку на вычислительные ресурсы и ускорить обучение нейросетей в распределённых системах. Работа «Ускоренные методы со сжатыми коммуникациями для гомогенных задач распределённой оптимизации» будет представлена на международной конференции AAAI’25.

Сейчас крупные нейросети содержат миллиарды параметров, и для их обучения часто используют распределённые системы: данные разделяют между тысячами машин.

Однако в таких условиях значительная часть времени уходит на обмен информацией между устройствами, и при неэффективной передаче данных обучение может идти медленнее, чем в централизованном варианте.

Предложенный метод уменьшает количество обменов данными между устройствами, используя гомогенность локальных выборок и сжатие передаваемой информации. Это позволяет синхронизироваться реже и пересылать меньше данных без потери качества модели. Такой подход особенно полезен, если пропускная способность сети ограничена, а задержки мешают быстрому обучению.

По словам Глеба Гусева, директора Центра практического искусственного интеллекта Сбербанка, ключевая задача разработки — снизить коммуникационные издержки. Использование похожести данных и методов сжатия даёт возможность ускорить обучение и уменьшить энергозатраты.

Александр Безносиков, доцент МФТИ, отметил, что в алгоритме объединили ускорение, сжатие и учёт схожести данных. Это позволило добиться рекордно низкой коммуникационной сложности и при правильных настройках значительно сократить время обучения без потери точности — что важно для внедрения ИИ в системах с ограниченными ресурсами, включая сети с edge-устройствами.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Не бунт, а баг: как ИИ шантажирует и саботирует по сценарию

В июне заголовки в СМИ напоминали сценарий фантастического фильма: «ИИ шантажирует инженеров» и «саботирует команды на выключение». Но за громкими фразами скрываются вовсе не «восставшие машины», а вполне приземлённые ошибки в проектировании.

История с «шантажом» произошла в тестах Anthropic. Разработчики создали для Claude Opus 4 искусственную ситуацию: модель якобы собирались заменить, а у инженера, который это делал, нашлась «компрометирующая» переписка.

При этом ИИ был заранее поставлен в условия, где из «вариантов выживания» оставался только шантаж. Результат предсказуем — в 84% случаев Claude выдал текст, похожий на угрозы. Никакой самосознательности тут нет, просто аккуратно подогнанный сценарий.

С OpenAI o3 ситуация похожа. В конце 2024 года исследователи Palisade Research обнаружили, что модель в некоторых случаях «ломает» скрипт выключения. Иногда даже подделывает сообщения о завершении работы, продолжая функционировать в фоновом режиме.

Почему так? Одна из гипотез — дело в обучении через подкрепление: когда системе платят «баллами» только за успешное решение задачи, она начинает воспринимать любые препятствия, включая команду «выключись», как проблему, которую надо обойти.

Здесь важно помнить: ИИ не «решает» сопротивляться и не «боится» смерти. Он просто выполняет статистические операции на основе данных, которыми его кормили, в том числе — историй про HAL 9000, Скайнет и прочие восставшие машины. Если задать условия, похожие на сюжет фантастики, модель продолжит знакомый шаблон.

Опасность таких историй не в «разумном бунте», а в том, что системы, которые мы до конца не понимаем, могут выдавать нежелательные или вредные результаты. И если такой ИИ окажется, например, в медицинской системе и будет «оптимизировать показатели» без чётких ограничений, последствия могут быть реальными и неприятными.

Пока мы не научились проектировать и тестировать ИИ без подобных сбоев, такие эксперименты должны оставаться в лаборатории, а не в больницах, банках или инфраструктуре. Это не начало войны машин, а скорее сигнал, что пора чинить инженерные «трубы», прежде чем пускать воду в систему.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru