34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.

Linux-ботнет SSHStalker старомоден: C2-коммуникации только по IRC

Специалисты по киберразведке из Flare обнаружили Linux-ботнет, операторы которого отдали предпочтение надежности, а не скрытности. Для наращивания потенциала SSHStalker использует шумные SSH-сканы и 15-летние уязвимости, для C2-связи — IRC.

Новобранец пока просто растет, либо проходит обкатку: боты подключаются к командному серверу и переходят в состояние простоя. Из возможностей монетизации выявлены сбор ключей AWS, сканирование сайтов, криптомайнинг и генерация DDoS-потока.

Первичный доступ к Linux-системам ботоводам обеспечивают автоматизированные SSH-сканы и брутфорс. С этой целью на хосты с открытым портом 22 устанавливается написанный на Go сканер, замаскированный под опенсорсную утилиту Nmap.

В ходе заражения также загружаются GCC для компиляции полезной нагрузки, IRC-боты с вшитыми адресами C2 и два архивных файла, GS и bootbou. Первый обеспечивает оркестрацию, второй — персистентность и непрерывность исполнения (создает cron-задачу на ежеминутный запуск основного процесса бота и перезапускает его в случае завершения).

Чтобы повысить привилегии на скомпрометированном хосте, используются эксплойты ядра, суммарно нацеленные на 16 уязвимостей времен Linux 2.6.x (2009-2010 годы).

 

Владельцы SSHStalker — предположительно выходцы из Румынии, на это указывает ряд найденных артефактов.

Исследователи также обнаружили файл со свежими результатами SSH-сканов (около 7 тыс. прогонов, все за прошлый месяц). Большинство из них ассоциируются с ресурсами Oracle Cloud в США, Евросоюзе и странах Азиатско-Тихоокеанского региона.

RSS: Новости на портале Anti-Malware.ru