Гарда NDR теперь предотвращает сложнодетектируемые сетевые атаки

Гарда NDR теперь предотвращает сложнодетектируемые сетевые атаки

Гарда NDR теперь предотвращает сложнодетектируемые сетевые атаки

ГК «Гарда» объявила о выходе новой версии системы выявления и реагирования на сетевые угрозы – NDR. Она может выявлять аномалии в сетевом трафике с помощью методов продвинутой аналитики, что позволяет предотвращать атаки, которые сложно выявить с помощью традиционных инструментов сетевой безопасности.

Прежде всего модуль аналитики направлен на выявление обращений к центрам контроля и управления, которые используют ботнеты.

Технология позволяет выявлять повторяющиеся последовательности из нескольких уникальных запросов ботов. «Гарда NDR» выявляет скрытые зависимости в сетевом трафике, более точно определяет аномалии, которые указывают на присутствие ботов и их активность в сети.

Как утверждают разработчики, применяемая модель устойчива к шифрованию и поддерживает детектирование даже при использовании туннелей DNS-over-HTTPs. В итоге она может противодействовать даже сложнодетектируемым сетевым угрозам.

«В 2021 мы выпустили первую версию поведенческих ML-моделей (моделей машинного обучения) и приняли стратегическое решение развивать несигнатурные методы выявления угроз и аномалий, которые являются ключевым элементом функциональности для NTA / NDR-решений, – отметил руководитель разработки продукта «Гарда NDR» Павел Шубин. – С того момента ML-модели «Гарда NDR» существенно эволюционировали, сейчас они способны выявлять даже неочевидные отклонения поведения устройств и пользователей, которые нельзя определить другими методами. Поведенческие модели (профилирование) с учетом постоянно возрастающей сложности атак по-прежнему остаются наиболее действенным инструментом их детектирования».

«Сейчас мы ясно пониманием, что российский подход к NTA-решениям, основанный на сочетании IDS и DPI , устарел и не отвечает задачам рынка и актуальному ландшафту угроз. Мы постоянно совершенствуем ML-модели и выпустили новую модель для детектирования обращений к C&C, которая позволяет детектировать маскирующиеся последовательности из нескольких уникальных "отстуков"», – добавил руководитель продукта «Гарда NDR» Станислав Грибанов.

Поддельный пакет для WhatsApp из NPM сливает сообщения и контакты

В экосистеме JavaScript обнаружили очередную, но особенно неприятную атаку на цепочку поставок. В каталоге NPM более полугода распространялся вредоносный пакет lotusbail, который выдавал себя за библиотеку для работы с WhatsApp API (принадлежит признанной в России экстремистской организации и запрещённой корпорации Meta) — и при этом тихо воровал переписку, контакты и учётные данные пользователей.

На находку обратили внимание исследователи из Koi Security, опубликовав подробный технический разбор. К моменту обнаружения пакет успели скачать более 56 тысяч раз, что делает ситуацию далеко не нишевой.

В отличие от многих зловредов в NPM, которые ломаются или выдают себя странным поведением, lotusbail был практически идеальной подделкой. Его авторы просто склонировали популярную библиотеку @whiskeysockets/baileys, которая используется для работы с WhatsApp Web через WebSocket, и аккуратно встроили в неё вредоносный код.

 

Снаружи всё выглядело легитимно: приложения на базе lotusbail спокойно отправляли и получали сообщения. Но параллельно библиотека:

  • перехватывала все входящие и исходящие сообщения;
  • собирала медиафайлы;
  • вытаскивала списки контактов с номерами телефонов;
  • сохраняла WhatsApp-сессии, токены и коды привязки устройств.

 

Причём перехватывались не только новые сообщения, но и исторические данные, доступные через API.

Самая опасная часть — использование механизма «сопряжение устройств» в WhatsApp. В коде пакета был зашит жёстко заданный, зашифрованный AES код привязки, который незаметно подключал устройство злоумышленника к аккаунту жертвы.

 

В результате атакующий получал постоянный доступ к WhatsApp-аккаунту, который сохранялся даже после удаления вредоносного пакета из проекта.

Проще говоря, удалить lotusbail недостаточно. Чтобы полностью закрыть дыру, жертве нужно вручную отвязать все устройства в настройках WhatsApp.

Собранные данные дополнительно шифровались с помощью кастомной реализации RSA. Это не имело отношения к сквозному шифрованию WhatsApp — цель была другой: спрятать утечки от систем мониторинга и сетевых средств защиты.

Эксперты отмечают, что атака отлично иллюстрирует главную проблему экосистемы open source: функциональность маскирует вредоносную логику. NPM остаётся одной из самых привлекательных целей для атак на цепочки поставок — из-за масштаба, доверия разработчиков и низкого порога публикации пакетов.

Ранее в новом докладе властей Великобритании прозвучала мысль, что разработка зашифрованных мессенджеров вроде WhatsApp теоретически может считаться «враждебной деятельностью».

RSS: Новости на портале Anti-Malware.ru