Гарда NDR теперь предотвращает сложнодетектируемые сетевые атаки

Гарда NDR теперь предотвращает сложнодетектируемые сетевые атаки

Гарда NDR теперь предотвращает сложнодетектируемые сетевые атаки

ГК «Гарда» объявила о выходе новой версии системы выявления и реагирования на сетевые угрозы – NDR. Она может выявлять аномалии в сетевом трафике с помощью методов продвинутой аналитики, что позволяет предотвращать атаки, которые сложно выявить с помощью традиционных инструментов сетевой безопасности.

Прежде всего модуль аналитики направлен на выявление обращений к центрам контроля и управления, которые используют ботнеты.

Технология позволяет выявлять повторяющиеся последовательности из нескольких уникальных запросов ботов. «Гарда NDR» выявляет скрытые зависимости в сетевом трафике, более точно определяет аномалии, которые указывают на присутствие ботов и их активность в сети.

Как утверждают разработчики, применяемая модель устойчива к шифрованию и поддерживает детектирование даже при использовании туннелей DNS-over-HTTPs. В итоге она может противодействовать даже сложнодетектируемым сетевым угрозам.

«В 2021 мы выпустили первую версию поведенческих ML-моделей (моделей машинного обучения) и приняли стратегическое решение развивать несигнатурные методы выявления угроз и аномалий, которые являются ключевым элементом функциональности для NTA / NDR-решений, – отметил руководитель разработки продукта «Гарда NDR» Павел Шубин. – С того момента ML-модели «Гарда NDR» существенно эволюционировали, сейчас они способны выявлять даже неочевидные отклонения поведения устройств и пользователей, которые нельзя определить другими методами. Поведенческие модели (профилирование) с учетом постоянно возрастающей сложности атак по-прежнему остаются наиболее действенным инструментом их детектирования».

«Сейчас мы ясно пониманием, что российский подход к NTA-решениям, основанный на сочетании IDS и DPI , устарел и не отвечает задачам рынка и актуальному ландшафту угроз. Мы постоянно совершенствуем ML-модели и выпустили новую модель для детектирования обращений к C&C, которая позволяет детектировать маскирующиеся последовательности из нескольких уникальных "отстуков"», – добавил руководитель продукта «Гарда NDR» Станислав Грибанов.

ГК Солар запатентовала технологию выявления ботов на уровне HTTPS

ГК «Солар» получила патент на технологию, которая помогает автоматически отличать опасные бот-запросы от действий реальных пользователей ещё на этапе подключения к веб-серверу. Патент был выдан Роспатентом 27 ноября 2025 года. Речь идёт о механизме анализа HTTPS-соединений, который оценивает вероятность того, что запрос был отправлен ботом.

В основе разработки — математическая модель, обученная на статистике поведения легитимных пользователей и автоматических скриптов. Если система считает запрос подозрительным, пользователю предлагается пройти дополнительную проверку. Если нет — соединение устанавливается без задержек.

Подход позволяет отсеивать нежелательную активность до загрузки страницы, не перегружая сайт и не мешая реальным посетителям. Это особенно актуально для интернет-магазинов и других онлайн-ресурсов малого и среднего бизнеса, где даже кратковременные сбои могут напрямую отражаться на выручке.

По оценке разработчиков, технология помогает бороться сразу с несколькими распространёнными проблемами. Среди них — автоматизированный сбор данных, когда боты массово выгружают информацию о товарах и ценах, искажают аналитику и создают почву для мошенничества. Также система позволяет выявлять накрутку кликов и просмотров, автоматические переборы логинов и паролей, разведку перед атаками и попытки перегрузить сайт бот-DDoS-трафиком.

Как поясняют в «Соларе», ключевая идея заключалась в том, чтобы анализировать не содержимое запроса, а его технические параметры, характерные именно для автоматических инструментов. Такой подход остаётся эффективным даже в условиях, когда боты всё лучше маскируются под поведение обычных пользователей.

По словам директора продукта Solar Space Артёма Избаенкова, сегодня на ботов приходится уже более половины мирового интернет-трафика, и значительная часть этой активности связана с вредоносными сценариями. Использование нейросетевой модели позволяет снизить влияние человеческого фактора и повысить точность фильтрации.

Руководитель направления развития облачных технологий ГК «Солар» Дмитрий Лукин отмечает, что разработка выросла из практических задач защиты заказчиков. Основной целью было научиться отсеивать замаскированных ботов на самом раннем этапе, ещё до обработки запроса веб-приложением. После тестирования и доработки модель легла в основу патентованного решения.

В компании добавляют, что технология уже применяется в линейке решений Solar Space — как в облачном формате, так и в развёртываниях on-premise.

RSS: Новости на портале Anti-Malware.ru