Вышла R-Vision TIP 3.16 с переработанным сервисом фида ФинЦЕРТ

Вышла R-Vision TIP 3.16 с переработанным сервисом фида ФинЦЕРТ

Вышла R-Vision TIP 3.16 с переработанным сервисом фида ФинЦЕРТ

R-Vision выпустила новую версию платформы анализа информации о киберугрозах — R‑Vision TIP 3.16. Версия 3.16 включает в себя ряд существенных обновлений.

Разработчик расширил список поддерживаемых SIEM-систем и межсетевых экранов, переработал сервис фида ФинЦЕРТ, а также улучшил собственный источник данных — R-Vision Threat Feed, который теперь может самостоятельно определять связи между сущностями, странами и отраслями субъектов угроз.

Одна из функций платформы R-Vision TIP — возможность реактивного и ретроспективного поиска индикаторов компрометации внутри потока событий, поступающих от SIEM-систем. После ухода с российского рынка иностранных поставщиков SIEM, усилилась необходимость расширения списка отечественных вендоров. Платформа R-Vision TIP поддерживает интеграцию не только с популярными зарубежными решениям, но и с отечественными SIEM-системами. Так, в обновленной версии продукта вендор добавил новые интеграции с такими российскими системами, как VolgaBlob Smart Monitor и Kaspersky Unified Monitoring and Analysis Platform.

Также в обновлении R-Vision расширил список поддерживаемых сторонних производителей СЗИ для экспорта индикаторов компрометации. Обнаруженные индикаторы компрометации могут автоматически экспортироваться на межсетевые экраны для дальнейшей обработки и защиты сетевой инфраструктуры. В новой версии платформы перечень доступных для интеграции решений вендоров пополнился отечественным производителем межсетевых экранов Ideco UTM. Кроме того, добавлена новая возможность настраивать интеграцию и правила экспорта индикаторов из R-Vision TIP в Kaspersky Security Network.

Команда R-Vision TIP продолжает развивать свой собственный фид, интегрированный в платформу. Он автоматически собирает TI-отчеты из достоверных открытых источников, а также извлекает из них ключевые артефакты Threat Intelligence. В обновленной версии R-Vision Threat Feed в 11 раз увеличен датасет для обучения модели распознавания артефактов TI и существенно выросла точность распознавания сущностей: теперь модель умеет определять непосредственные связи между сущностями, а также страны и индустрии субъектов угроз и жертв.

В версии R-Vision TIP 3.16 разработчики расширили модель данных, добавив в нее новые типы индикаторов — ИНН, СНИЛС, хэш суммы номеров паспортов, номера счетов, электронных кошельков и телефонов. Эта информация загружается в R-Vision TIP из нового источника данных — АС «Фид-Антифрод», который содержит информацию о получателях скомпрометированных переводов. В ранних версиях платформы R-Vision TIP пользователь мог получать информацию через основной канал об инцидентах Банка России, фидом АСОИ ФинЦЕРТ.

Зачастую информация, полученная от поставщиков данных, лишена контекста, необходимого для анализа индикаторов компрометации и/или связанных с ними событий нарушения безопасности. В рамках планомерного расширения источников получения контекста в новой версии R-Vision TIP была реализована поддержка двух новых сервисов обогащения UrlScan и URLhaus.

«Данные киберразведки являются ключевым элементом для анализа угроз, поэтому список поставщиков данных TI будет и далее пополняться в R-Vision TIP — прокомментировала Валерия Чулкова, руководитель продукта R-Vision TIP. — Кроме того, команда R-Vision TIP также продолжит расширение списка поддерживаемых СЗИ отечественных производителей, что особенно важно в связи со сложившейся конъюнктурой рынка информационной безопасности».

Минцифры создаст полигон для тестирования систем с ИИ на безопасность

Минцифры планирует создать киберполигон для тестирования систем с искусственным интеллектом (ИИ) на безопасность. В первую очередь речь идёт о решениях, предназначенных для применения на объектах критической инфраструктуры, а также о системах с функцией принятия решений.

О том, что министерство ведёт работу над созданием такого полигона, сообщил РБК со ссылкой на несколько источников.

Площадка будет использоваться для тестирования ИИ-систем, которые в дальнейшем должны пройти сертификацию ФСТЭК и ФСБ России. Это предусмотрено правительственным законопроектом «О применении систем искусственного интеллекта органами, входящими в единую систему публичной власти, и внесении изменений в отдельные законодательные акты».

Документ вводит четыре уровня критичности ИИ-систем:

  • минимальный — влияние на безопасность отсутствует или минимально;
  • ограниченный;
  • высокий — относится к системам, используемым на объектах критической информационной инфраструктуры;
  • критический — системы, способные угрожать жизни и здоровью людей или безопасности государства, а также автономные комплексы, принимающие самостоятельные решения.

Определять уровень критичности будет Национальный центр искусственного интеллекта в сфере госуправления при правительстве. Эта же структура займётся ведением реестра сертифицированных ИИ-систем.

Конкретные требования к сертификации планируется закрепить в отдельных нормативных документах, которые пока находятся в разработке. На текущем этапе единственным обязательным условием является включение программного обеспечения в реестр Минцифры.

По данным «Российской газеты», распространять новые требования на коммерческие ИИ-решения не планируется. При этом в аппарате первого вице-премьера Дмитрия Григоренко пояснили, что ключевая цель законопроекта — снизить риски применения ИИ в сферах с высокой ценой ошибки, включая здравоохранение, судопроизводство, общественную безопасность и образование.

RSS: Новости на портале Anti-Malware.ru