Вышла R-Vision UEBA 1.14 с расширенными возможностями сбора данных

Вышла R-Vision UEBA 1.14 с расширенными возможностями сбора данных

Вышла R-Vision UEBA 1.14 с расширенными возможностями сбора данных

R-Vision представила новую версию платформы для анализа поведения объектов и выявления аномалий — R-Vision UEBA 1.14 (ранее — R-Vision SENSE). В этом релизе разработчики ввели несколько значимых изменений, повышающих функциональные возможности продукта.

Одним из ключевых нововведений является интеграция с технологией R-Vision Endpoint, что позволяет расширить возможности сбора данных с конечных устройств.

Теперь платформа может собирать более широкий спектр событий и телеметрии из различных операционных систем: Windows, Linux и macOS. Это значительно увеличивает объём доступных данных для аналитиков сферы информационной безопасности и обеспечивает более качественные события для последующего анализа.

Кроме того, разработчики улучшили карточку объекта, добавив дополнительную информацию, включая технические характеристики объекта и связанные с ним сущности. Это обогащение информации позволяет специалистам быстрее получать доступ к объекту и полному контексту, что значительно ускоряет процесс поиска причин аномалий.

В новой версии также появилась новая вкладка «Аналитика за сутки» в карточке объекта. На этой вкладке отображается изменение рейтинга, аномалии и задействованные устройства за последние 24 часа. Аналитики могут быстро просмотреть все действия пользователей за последние сутки и определить, являются ли они аномальными, требующими дальнейшего расследования.

Помимо этого, платформа была дополнена новыми моделями данных и расширением списка атрибутов. Это позволяет получать больше контекста по событиям и проводить более детальный анализ при выявлении аномалий в корпоративной инфраструктуре.

Общая цель обновления платформы R-Vision UEBA 1.14 состоит в том, чтобы предоставить экспертам эффективные инструменты для оперативного получения важных артефактов, анализа поведения объектов и выявления аномалий. Все улучшения направлены на обеспечение быстрого и успешного выявления аномалий, позволяя аналитикам сократить время на обнаружение и изучение атак и принимать соответствующие меры по их предотвращению.

Более трех четвертей россиян не отличают нейросетевой контент от реального

Согласно исследованию агентств Spektr и СКОТЧ, 77% участников не смогли отличить изображения, созданные нейросетями, от реальных фотографий. В опросе приняли участие около 1000 человек. Респондентам в случайном порядке показывали пять изображений, из которых четыре были сгенерированы ИИ, а одно — подлинное.

Результаты исследования приводит РБК. Корректно определить сгенерированные изображения смогли лишь 23% опрошенных.

При этом в более молодых возрастных группах показатели оказались выше. Среди респондентов до 30 лет правильный ответ дали 30%, в группе 31–44 года — 25%.

В числе признаков «настоящего» фото участники называли убедительные детали, реалистичные свет и тени, а также естественную улыбку человека в кадре. Например, изображение с улыбающимся мужчиной чаще других считали реальным участники в возрасте 45–60 лет — 28% из них выбрали именно этот вариант.

Примечательно, что доля тех, кто ошибается при определении ИИ-контента, растёт. Согласно результатам исследования MWS, опубликованным летом 2025 года, правильно распознать сгенерированные изображения смогли более трети респондентов.

RSS: Новости на портале Anti-Malware.ru