Вышла R-Vision UEBA 1.14 с расширенными возможностями сбора данных

Вышла R-Vision UEBA 1.14 с расширенными возможностями сбора данных

Вышла R-Vision UEBA 1.14 с расширенными возможностями сбора данных

R-Vision представила новую версию платформы для анализа поведения объектов и выявления аномалий — R-Vision UEBA 1.14 (ранее — R-Vision SENSE). В этом релизе разработчики ввели несколько значимых изменений, повышающих функциональные возможности продукта.

Одним из ключевых нововведений является интеграция с технологией R-Vision Endpoint, что позволяет расширить возможности сбора данных с конечных устройств.

Теперь платформа может собирать более широкий спектр событий и телеметрии из различных операционных систем: Windows, Linux и macOS. Это значительно увеличивает объём доступных данных для аналитиков сферы информационной безопасности и обеспечивает более качественные события для последующего анализа.

Кроме того, разработчики улучшили карточку объекта, добавив дополнительную информацию, включая технические характеристики объекта и связанные с ним сущности. Это обогащение информации позволяет специалистам быстрее получать доступ к объекту и полному контексту, что значительно ускоряет процесс поиска причин аномалий.

В новой версии также появилась новая вкладка «Аналитика за сутки» в карточке объекта. На этой вкладке отображается изменение рейтинга, аномалии и задействованные устройства за последние 24 часа. Аналитики могут быстро просмотреть все действия пользователей за последние сутки и определить, являются ли они аномальными, требующими дальнейшего расследования.

Помимо этого, платформа была дополнена новыми моделями данных и расширением списка атрибутов. Это позволяет получать больше контекста по событиям и проводить более детальный анализ при выявлении аномалий в корпоративной инфраструктуре.

Общая цель обновления платформы R-Vision UEBA 1.14 состоит в том, чтобы предоставить экспертам эффективные инструменты для оперативного получения важных артефактов, анализа поведения объектов и выявления аномалий. Все улучшения направлены на обеспечение быстрого и успешного выявления аномалий, позволяя аналитикам сократить время на обнаружение и изучение атак и принимать соответствующие меры по их предотвращению.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru