Эксперты нашли способ украсть данные в процессе гомоморфного шифрования

Эксперты нашли способ украсть данные в процессе гомоморфного шифрования

Эксперты нашли способ украсть данные в процессе гомоморфного шифрования

Исследователи из Университета штата Северная Каролина разработали метод атаки по сторонним каналам, который обходит гомоморфное шифрование. Показать подробности вектора специалисты планируют на конференции DATE22, запланированной на 23 марта.

По словам экспертов, их способ позволяет украсть важные данные даже в процессе их шифрования с помощью вышеупомянутого гомоморфного шифрования. Айдын Айсу, один из исследователей, сравнил технику с методом прослушивания сейфа, который нам часто демонстрируют в голливудских боевиках.

«Примерно то же самое мы делаем с компьютерными системами: внимательно слушаем, пока они выполняют определённые криптографические операции. Этот способ помогает нам понять, какие на самом деле происходят вычисления», — объясняет эксперт.

Напомним, что форма шифрования, получившая название «гомоморфное», позволяет производить математические действия с зашифрованным текстом и получать такой же результат   и с тем же успехом, если бы операция выполнялась с открытым текстом. Впервые о гомоморфном шифровании заговорили несколько лет назад.

Польза от этого метода для компаний вполне очевидна: они могут безопасно хранить данные в облаке, а также проводить аналитику без необходимости предоставлять провайдеру доступ к ключам шифрования.

Новый вектор атаки опирается прежде всего на уязвимость в имплементации полного гомоморфного шифрования от Microsoft — Simple Encrypted Arithmetic Library (SEAL). В сущности, это некий набор библиотек для шифрования, позволяющий проводить операции с зашифрованными данными.

Саму уязвимость исследователи описывают как «возможность утечки данных по сторонним каналам». Судя по всему, брешь затрагивает версию Microsoft SEAL 3.6. В результате условный атакующий может использовать измерение мощности в процессе выполнения криптографических операций. Итогом станет получение информации в виде простого текста.

Более трех четвертей россиян не отличают нейросетевой контент от реального

Согласно исследованию агентств Spektr и СКОТЧ, 77% участников не смогли отличить изображения, созданные нейросетями, от реальных фотографий. В опросе приняли участие около 1000 человек. Респондентам в случайном порядке показывали пять изображений, из которых четыре были сгенерированы ИИ, а одно — подлинное.

Результаты исследования приводит РБК. Корректно определить сгенерированные изображения смогли лишь 23% опрошенных.

При этом в более молодых возрастных группах показатели оказались выше. Среди респондентов до 30 лет правильный ответ дали 30%, в группе 31–44 года — 25%.

В числе признаков «настоящего» фото участники называли убедительные детали, реалистичные свет и тени, а также естественную улыбку человека в кадре. Например, изображение с улыбающимся мужчиной чаще других считали реальным участники в возрасте 45–60 лет — 28% из них выбрали именно этот вариант.

Примечательно, что доля тех, кто ошибается при определении ИИ-контента, растёт. Согласно результатам исследования MWS, опубликованным летом 2025 года, правильно распознать сгенерированные изображения смогли более трети респондентов.

RSS: Новости на портале Anti-Malware.ru