В Smart Fraud Detection добавлены дополнительные параметры транзакции

В Smart Fraud Detection добавлены дополнительные параметры транзакции

В Smart Fraud Detection добавлены дополнительные параметры транзакции

Фаззи Лоджик Лабс обновила систему Smart Fraud Detection до версии 3.5. Обновления включают в себя дополнительные параметры транзакции для СБП, функции для удобства работы пользователя и технические разработки в модуле правил и оценке поведенческих профилей.

Для соблюдений требований НСПК для Системы Быстрых Платежей в систему Smart Fraud Detection добавлены параметры транзакции для передачи суммы и валюты комиссии. Параметры теперь доступны в интерфейсе для использования в правилах и других рассчитываемых параметрах.

Для удобства работы пользователей разработчики изменили дизайн графических форм интерфейса. Также добавили шаблоны примечаний для использования в инцидентах, правилах и списках и разработали новый справочник по добавлению-удалению атрибутов в списках в карточке инцидентов.

По запросам пользователей разработаны новые функциональные возможности автоматического формирования существующих и новых отчетных форм (Отчеты по расписанию) с последующей отправкой их по электронной почте или сохранением на сетевом ресурсе.

В систему добавлены новые отчетные формы:

  • Контроль выполнения ночных заданий – статистические данные о выполнении ночных заданий и калибровки данных.
  • Время обработки транзакций – данные о времени обработки транзакций.

В версии 3.5 системы Smart Fraud Detection представлена новая функция Динамические объекты расчета. Эта функция позволяет работать с собственными настраиваемыми объектами хранения. Динамические объекты используются при расчете дополнительных параметров в соответствии с собственными алгоритмами для подробного анализа поведенческих профилей.

Для функции Генератор правил в системе добавлена возможность создания новых запросов на генерацию путем копирования существующих.

Компания Фаззи Лоджик Лабс с 2016 года занимается разработкой, внедрением и технической поддержкой программного обеспечения (система Smart Fraud Detection) для противодействия мошенническим транзакциям в различных каналах обслуживания клиентов. Компания реализует комплексные проекты для разных отраслей экономики: от финансового сектора до предприятий розничной торговли.

Внутренние ссылки: Динамические объекты расчета, Генератор правил, Обновление системы до версии 3.4.

Более трех четвертей россиян не отличают нейросетевой контент от реального

Согласно исследованию агентств Spektr и СКОТЧ, 77% участников не смогли отличить изображения, созданные нейросетями, от реальных фотографий. В опросе приняли участие около 1000 человек. Респондентам в случайном порядке показывали пять изображений, из которых четыре были сгенерированы ИИ, а одно — подлинное.

Результаты исследования приводит РБК. Корректно определить сгенерированные изображения смогли лишь 23% опрошенных.

При этом в более молодых возрастных группах показатели оказались выше. Среди респондентов до 30 лет правильный ответ дали 30%, в группе 31–44 года — 25%.

В числе признаков «настоящего» фото участники называли убедительные детали, реалистичные свет и тени, а также естественную улыбку человека в кадре. Например, изображение с улыбающимся мужчиной чаще других считали реальным участники в возрасте 45–60 лет — 28% из них выбрали именно этот вариант.

Примечательно, что доля тех, кто ошибается при определении ИИ-контента, растёт. Согласно результатам исследования MWS, опубликованным летом 2025 года, правильно распознать сгенерированные изображения смогли более трети респондентов.

RSS: Новости на портале Anti-Malware.ru