Развитие ИИ и разведка изменят обычные преимущества киберпреступников

Развитие ИИ и разведка изменят обычные преимущества киберпреступников

Развитие ИИ и разведка изменят обычные преимущества киберпреступников

Fortinet выпустил прогноз ландшафта угроз на 2020 и последующие годы, подготовленный командой экспертов FortiGuard Labs. Исследование раскрывает направления, по которым будут действовать киберпреступники в ближайшем будущем. Кроме этого, были обозначены приемы, которые помогут организациям защититься от будущих атак. Для более подробного ознакомления с прогнозами и ключевыми выводами  исследования посетите блог.

«До сих пор успех в действиях злоумышленников был связан во многом с расширением поверхности кибератак и образующихся в результате этого пробелов в безопасности, вызванных цифровой трансформацией. В последнее время их методики проведения атак стали еще более изощренными благодаря интеграции начальных форм ИИ и swarm technology», — Дерек Мэнки, руководитель отдела безопасности и анализа глобальных угроз, Fortinet.

«К счастью, можно восстановить прежний уровень безопасности, если многие компании будут придерживаться одинаковых стратегий для защиты своих сетей, через которые преступники организуют нападения. Это потребует унифицированного подхода с использованием широкоформатных, интегрированных и автоматизированных решений для обеспечения защиты и подконтрольности всех сегментов сети, а также различных периферийных устройств, от IoT до динамически подключаемых облаков».

Ключевые выводы исследования:

Смена направления кибератак

За последние годы методики проведения кибератак становились все более изощренными, что привело к росту их эффективности и скорости. Этот тренд, вероятнее всего, сохранится, пока на рынке не появится достаточно организаций, которые изменят свой подход к стратегиям защиты. Учитывая масштабы нынешнего ландшафта глобальных угроз, скорость и сложность кибератак, организациям придется реагировать на возникающие угрозы в реальном времени, не отставая от работы машин, чтобы эффективно противостоять агрессивным действиям. В этой борьбе станет жизненно необходимым применять последние достижения в области искусственного интеллекта (ИИ) и исследования угроз.

Эволюция ИИ для обеспечения безопасности

Одной из долгосрочных целей в разработке ИИ для обеспечения безопасности является создание адаптивной системы невосприимчивости к угрозам, работающей аналогично иммунной системе человека. Разработка такого ИИ первого поколения была направлена на использование различных моделей машинного обучения. Они обучались, корректировались и предлагали определенный план действий для отражения атаки. В системах ИИ второго поколения акцент был сделан на создание механизма интеллектуального анализа. Его уровень значительно вырос к этому времени и позволял выявлять паттерны, существенно улучшавшие работу различных функций, таких как управление доступом, путем размещения обучающихся узлов по всем направлениям защиты. Развитие систем ИИ третьего поколения идет по пути отказа от использования монолитного центра обработки в пользу создания системы региональных обучающихся узлов. Данные накапливаются локально и используются для распределенного сравнения, коррекции и анализа. Это будет иметь крайне важное значение для компаний, которые ищут пути защиты своих разрастающихся периферийных сегментов.

Распределенное машинное обучение

Помимо применения традиционных форм анализа угроз с использованием данных из открытых источников или после изучения внутреннего трафика и накопленной информации, будущие системы машинного обучения начнут со временем активно применять данные, собираемые с периферийных устройств нового поколения и передаваемые на локальные обучающиеся узлы. Отслеживая и сопоставляя информацию в реальном времени, ИИ-система сможет иметь более полное представление о текущем состоянии угроз. Она также сможет корректировать работу локальных устройств, задавая им правила для ответной реакции на инциденты. Это позволит будущим ИИ-системам безопасности распознавать угрозы, корректировать свои действий, отслеживать и быть готовыми к ответным мерам, обмениваясь информацией в пределах сети. В конечном итоге, распределенная система обучения позволит объединить наборы данных, чтобы адаптироваться к изменяющимся условиям, тенденциям и событиям. Таким образом, каждое событие будет улучшать качество всем системы.  В результате, информация об инциденте, полученная в одном месте, будет повышать осведомленность о текущих угрозах для всей системы.

Применение ИИ и сценариев реагирования для предсказания кибератак

Внедрение ИИ позволяет компаниям не только автоматизировать выполнение задач, но и открывает возможность создания автоматизированной системы поиска и выявления кибератак – как после появления признаков, так и до реализации сценария. Благодаря совместному использованию машинного обучения и статистического анализа, организации могут разработать индивидуальный план действий с опорой на ИИ для улучшения раскрываемости угроз и реагирования. Подготовленные сценарии реагирования (playbooks) должны научиться выявлять закономерности (паттерны), с помощью которых ИИ будет прогнозировать действия атакующей стороны, подсказать время вероятного начала следующей атаки и даже выявлять подозреваемых, стоящих за угрозой. Если эти данные можно предоставить системе обучения ИИ, то удаленные обучаемые ноды смогут поддержать эффективную и упреждающую защиту, не ограниченную только обнаружением угроз, но позволяющую также предсказывать последующие действия, проактивно вмешиваться в процесс и координировать действия с другими нодами для одновременного противодействия на пути распространения атаки.

Возможности контрразведки и уловки

Одним из наиболее важных факторов борьбы против шпионажа является эффективная контрразведка. Это же справедливо и для кибератак или защиты, где все действия тщательно отслеживаются. Обороняющаяся сторона имеет явное преимущество в доступе к различного рода информации об угрозах. Киберпреступники обычно не обладают такими возможностями, к которым теперь добавились средства машинного обучения и ИИ. Однако применение хитроумных уловок может привести к ответным мерам со стороны злоумышленников. Они учатся отличать легитимный трафик от уловок и стараются делать это незаметно, чтобы не раскрыть себя во время атаки. Чтобы эффективно противостоять такой стратегии, организациям потребуется добавить в свой арсенал сценарии реагирования и улучшенные алгоритмы ИИ. Это поможет не только обнаруживать нарушителей, занятых разбором легитимного трафика, но и улучшит технологию уловок, что сделает невозможным их отличие от легитимных сообщений. В будущем организации должны научиться реагировать на любые шпионские приемы до начала активных действий, сохраняя за собой превосходство в контроле.

Усиление связей между правоохранительными органами

Деятельность организаций, связанная с кибербезопасностью, предоставляет им ряд уникальных привилегий, касающихся доступа к персональной информации; представители преступного мира не обладают таким правом. Это позволяет правоохранительным органам создавать собственные командные центры с глобальным охватом и распространять свои действия на частных лиц, имея возможность наблюдать за киберпреступниками в реальном времени и реагировать на их действия. Существующая система законных действий, а также связи с общественными и частными службами также может быть полезна для выявления нарушителей и ответной реакции. Можно ожидать появления инициатив по формированию единого подхода для связей между правоохранительными органами международного и местного уровней, правительственными организациями, корпоративным сектором и экспертами в области безопасности. Это будет способствовать развитию системы своевременного и безопасного обмена информацией для выстраивания защиты критически важной инфраструктуры и усиления борьбы с киберпреступлениями.

Создатели игры NationStates подтвердили утечку данных после RCE на сервере

Разработчики браузерной игры NationStates подтвердили утечку данных пользователей после того, как на этой неделе им пришлось временно отключить сайт для расследования киберинцидента. Выяснилось, что неаутентифицированный пользователь получил доступ к боевому серверу проекта и скопировал часть пользовательских данных.

NationStates — это многопользовательская онлайн-игра в жанре симулятора государства, созданная писателем Максом Барри по мотивам его романа Jennifer Government. Инцидент произошёл вечером 27 января 2026 года.

В этот день команда получила сообщение от одного из игроков о критической уязвимости в коде приложения. Однако в процессе «проверки» бага игрок вышел далеко за рамки допустимого и добился удалённого выполнения кода (RCE) на основном продакшн-сервере.

По словам Барри, этот пользователь с 2021 года неоднократно сообщал об уязвимостях и даже получал внутриигровой статус «баг-хантер», но никогда не имел разрешения на доступ к серверам или привилегированные действия. Тем не менее он сумел скопировать исходный код приложения и пользовательские данные на свою систему. Позже игрок извинился и заявил, что удалил полученные данные, но подтвердить это невозможно — поэтому команда считает и сервер, и данные скомпрометированными.

Причиной инцидента стала уязвимость в функции Dispatch Search, появившейся в сентябре 2025 года. По данным NationStates, атакующий объединил недостаточную очистку пользовательского ввода с ошибкой двойного парсинга, что и привело к удалённому выполнению кода. Для проекта это первый подобный случай за всю историю.

После обнаружения взлома сайт был отключён, а сервер решено полностью пересобрать «с нуля» на новом оборудовании. Разработчики также начали проверку того, какие именно данные были затронуты. По их оценке, восстановление работы займёт от двух до пяти дней. На момент публикации сайт открывался лишь эпизодически и показывал уведомление об утечке.

В числе скомпрометированных данных — адреса электронной почты (включая ранее использовавшиеся), MD5-хэши паролей, IP-адреса входа и строки User-Agent браузеров. В NationStates подчёркивают, что не собирают реальные имена, физические адреса, номера телефонов или данные банковских карт. После восстановления работы пользователи смогут посмотреть, какие данные хранились по их аккаунту, на специальной странице.

RSS: Новости на портале Anti-Malware.ru