Умные часы можно использовать в качестве кейлоггера

Умные часы можно использовать в качестве кейлоггера

Умные часы можно использовать в качестве кейлоггера

Французский студент Тони Белтрамелли (Tony Beltramelli) опубликовал в сети магистерскую диссертацию, озаглавленную «Глубокий шпионаж: слежка с использованием умных часов и глубинного обучения».

В соответствии с названием, Белтрамелли представил новый вектор атак, который использует датчики движения умных часов для перехвата PIN-кодов и прочей секретной информации.

Исследование Белтрамелли базируется на работе адъюнкт-профессора университета Иллинойса Ромита Роя Чондхри (Romit Roy Choudhury), который уже изучал вредоносный потенциал носимых устройств на примере часов Samsung Gear Live. Профессор пришел к выводу, что носимый гаджет может быть использован для перехвата нажатий клавиш, то есть может выступать в роли аппаратного кейлоггера, пишет xakep.ru.

В своем исследовании Белтрамелли ограничился перехватом данных с 12-клавишной клавиатуры, такие обычно используются в банкоматах, или отображаются на экране смартфона, во время ввода PIN-кода.

Студент использовал алгоритм глубинного обучения RNN-LSTM (Recurrent Neural Network — Long Short-Term Memory), чтобы научить искусственную нейронную сеть интерпретировать сигналы, получаемые от датчиков движения умных часов, а затем сопоставлять их с кнопками PIN-клавиатуры.

Чтобы доказать свою теорию на практике, Белтрамелли создал приложение для Sony SmartWatch 3, которое записывало данные акселерометра и гироскопа. Из-за аппаратных ограничений часов, студент не смог наладить прямую передачу собранных данных на сервер, пришлось прибегнуть к хитрости и настроить передачу на ближайшее Android-устройство (им выступил смартфон LG Nexus 4, передача осуществлялась посредством Bluetooth). Затем собранная информация уже отправлялась на сервер для последующего анализа.

Используя алгоритм, написанный с помощью Java, Python и Lua, Белтрамелли отсеял из записанных движений лишние шумы и смог выстроить паттерны для разных событий. К примеру, он научился определять, когда пользователь потянулся к экрану смартфона, чтобы набрать PIN-код, или когда он вводит PIN-код на клавиатуре банкомата.

Белтрамелли пишет, что данная архитектура способна достичь точности 73% при работе в роли тачлоггера и 59% точности при работе в роли кейлоггера. Обученная система, привыкшая оценивать датасеты разных клавиатур, также может угадывать нажатия клавиш с точностью 19%. Это позволит потенциальному злоумышленнику перехватывать нажатия на самых разных устройствах и клавиатурах, даже если исходно система обучалась на примерах совсем других девайсов.

Студент опубликовал исходные коды своего приложения и серверной части кода на GitHub. 

Staffcop добавил файловый сканер и перехват данных в MAX на Windows

В Staffcop (входит в экосистему «Контур») вышло обновление, которое добавляет больше инструментов для расследования инцидентов и профилактики утечек. Самое важное нововведение — файловый сканер для инвентаризации данных и перехват переписки в MAX на Windows.

Новый файловый сканер собирает информацию о файлах на рабочих станциях и в хранилищах, анализирует их содержимое и передаёт результаты на сервер.

Данные автоматически раскладываются по категориям, после чего с ними проще работать: настраивать доступы, политики, назначать метки. Для ИБ-специалистов добавили удобные фильтры и поиск — это упрощает разбор результатов и помогает быстрее находить чувствительные данные и потенциальные риски.

Кроме того, Staffcop теперь учитывает метки, которые проставляет «Спектр.Маркер», и использует их в метаданных файлов. Это позволяет точнее применять политики и ускоряет расследование инцидентов: информация из двух систем анализируется автоматически.

В части контроля коммуникаций добавлен перехват переписки в мессенджере MAX на Windows, а также WebWhatsApp на Linux. Это даёт возможность анализировать сообщения, фиксировать нарушения и выявлять признаки передачи защищаемой информации через несанкционированные каналы.

Разработчики также переработали обработку данных: ускорили извлечение текста и выделение слов-триггеров. Новый механизм спуллера распределяет нагрузку при приёме данных от агентов, что снижает риск просадок производительности и ошибок при работе с большими объёмами информации.

Появился обновлённый драйвер контроля клавиатуры — он позволяет надёжнее фиксировать ввод паролей при входе в систему. Это расширяет возможности контроля рабочих станций и помогает выявлять слабые пароли, несанкционированные учётные записи и попытки доступа.

Обновили и утилиту удалённой установки агентов: теперь можно гибче задавать правила установки и исключения, что особенно актуально для сложной инфраструктуры. Добавлена поддержка Rutoken на Windows для контроля использования токенов, а в интерфейсе появилась информация о сроке окончания технической поддержки сервера — чтобы администраторам было проще планировать обновления и продление поддержки.

RSS: Новости на портале Anti-Malware.ru