Balabit выпустила Blindspotter

Balabit представил продукт для поиска аномалий в поведении пользователей

Balabit представил продукт для поиска аномалий в поведении пользователей

Венгерская компания Balabit объявила о выпуске нового продукта Blindspotter, который предназначен для выявления аномалий в поведении пользователей. Предполагается, что эти аномалии вызваны либо деятельностью вредоносного ПО, либо перехватом идентификационной информации - в любом случае целью этой деятельности является детектирование неизвестных, а, возможно, и целенаправленных атак.

Blindspotter - это программный комплекс, который может получать информацию из различных источников: коллектора системных журналов Syslog-NG или построенного на его основе программно-аппаратного комплекса Syslog-NG Store Box, аналитических инструментов SIEM, модулей аутентификации пользователей или каталогов LDAP. Продукт впервые был представлен на выставке InfoSecurity в Лондоне в прошлом году, а сейчас стал доступен для коммерческого заказа в том числе и в России.

Система оценивает такие параметры пользовательской активности как время подключения, адреса доступа, скорость работы с клавиатурой, параметры операционной системы, используемые серверы и приложения, производительность. В частности, если человек слишком быстро набирает ответы или ему требуется очень мало времени на анализ информации, то у системы может возникнуть подозрение, что работает программный робот. Эти параметры анализируются и визуализируются для того, чтобы администраторы безопасности могли выявились и расследовать аномальное поведение пользователей, такое как запуск необычных для них программ или вход в систему в необычное время. В частности, с помощью Blindspotter можно определить момент, когда под именем одного пользователя в системе авторизовался другой, когда легальный пользователь начал злоупотреблять полномочиями и собирать сведения для организации их утечки, или когда легальный системный администратор случайно запустил вредоносный скрипт. Причём, продукт фиксирует такие события в реальном времени и сообщает о их обнаружении администратору безопасности.

По словам Питера Джанджоши, менеджера Balabit по Blindspotter, этот продукт задумывался как средство управления различного типа операционными рисками. То есть теоретически его можно использовать для выявления подозрительного поведения клиентов, для чего достаточно получать сведения из специализированных приложений, таких как CRM или службы технической поддержки. В результате, можно будет выявлять различные виды мошенничества со стороны клиентов и оценивать риск проведения несанкционированных операций. Продукт позволяет разрешать постепенные, но не опасные отклонения в поведении, а вот сильные и опасные - блокировать. "Если вы не можете определить насколько опасны действия пользователей, то лучше поставить для них пониженный приоритет," - рекомендует Питер Джонджоши.

По его словам Blindspotter будет развиваться как платформа для построения решения управления рисками. Со временем планируется предложить партнёрам разработать модули взаимодействия с продуктом, которые как раз и позволили бы добавлять в систему сведения из различных приложений. API не будет открытым, но партнёры смогут получить к нему доступ и реализовать взаимодействие со своими продуктами. Прежде всего такой продукт может быть востребован в финансовой индустрии или для обеспечения непрерывности бизнеса, то есть в тех компаниях, которые сильно зависят от работоспособности ИТ-системы и имеют много пользователей.

Linux-фреймворк DKnife годами следил за трафиком пользователей

Исследователи из Cisco Talos рассказали о ранее неизвестном вредоносном фреймворке под названием DKnife, который как минимум с 2019 года используется в шпионских кампаниях для перехвата и подмены сетевого трафика прямо на уровне сетевых устройств.

Речь идёт не о заражении отдельных компьютеров, а о компрометации маршрутизаторов и других устройств, через которые проходит весь трафик пользователей.

DKnife работает как инструмент постэксплуатации и предназначен для атак формата «атакующий посередине» («adversary-in-the-middle») — когда злоумышленник незаметно встраивается в сетевой обмен и может читать, менять или подсовывать данные по пути к конечному устройству.

Фреймворк написан под Linux и состоит из семи компонентов, которые отвечают за глубокий анализ пакетов, подмену трафика, сбор учётных данных и доставку вредоносных нагрузок.

 

По данным Talos, в коде DKnife обнаружены артефакты на упрощённом китайском языке, а сам инструмент целенаправленно отслеживает и перехватывает трафик китайских сервисов — от почтовых провайдеров и мобильных приложений до медиаплатформ и пользователей WeChat. Исследователи с высокой уверенностью связывают DKnife с APT-группировкой китайского происхождения.

Как именно атакующие получают доступ к сетевому оборудованию, установить не удалось. Однако известно, что DKnife активно взаимодействует с бэкдорами ShadowPad и DarkNimbus, которые уже давно ассоциируются с китайскими кибершпионскими операциями. В некоторых случаях DKnife сначала устанавливал подписанную сертификатом китайской компании версию ShadowPad для Windows, а затем разворачивал DarkNimbus. На Android-устройствах вредоносная нагрузка доставлялась напрямую.

 

После установки DKnife создаёт на маршрутизаторе виртуальный сетевой интерфейс (TAP) и встраивается в локальную сеть, получая возможность перехватывать и переписывать пакеты «на лету». Это позволяет подменять обновления Android-приложений, загружать вредоносные APK-файлы, внедрять зловреды в Windows-бинарники и перехватывать DNS-запросы.

Функциональность фреймворка на этом не заканчивается. DKnife способен собирать учётные данные через расшифровку POP3 и IMAP, подменять страницы для фишинга, а также выборочно нарушать работу защитных решений и в реальном времени отслеживать действия пользователей.

В список попадает использование мессенджеров (включая WeChat и Signal), картографических сервисов, новостных приложений, звонков, сервисов такси и онлайн-покупок. Активность в WeChat анализируется особенно детально — вплоть до голосовых и видеозвонков, переписки, изображений и прочитанных статей.

Все события сначала обрабатываются внутри компонентов DKnife, а затем передаются на командные серверы через HTTP POST-запросы. Поскольку фреймворк размещается прямо на сетевом шлюзе, сбор данных происходит в реальном времени.

RSS: Новости на портале Anti-Malware.ru