Корпорацией Symantec разработана новая технология защиты данных

Корпорацией Symantec разработана новая технология защиты данных

Корпорация Symantec объявила о выпуске решения для предотвращения потери данных Symantec Data Loss Prevention 11, которое упростит обнаружение и защиту наиболее важной информации предприятий - их интеллектуальной собственности. Новая версия решения будет включать в себя самообучаемый алгоритм анализа данных Vector Machine Learning (VML).



VML – первая и единственная на рынке технология анализа и предотвращения утечек данных, основанная на принципах искусственного интеллекта и способная самостоятельно идентифицировать данные, доступ к которым должен быть ограничен. Кроме того, Symantec Data Loss Prevention 11 повышает эффективность процесса реагирования на инциденты при помощи усовершенствованной технологии Data Insight, а также предусматривает дополнительные меры безопасности на конечных точках.

Больше данных – больше рисков

Объем неструктурированных данных растет более чем на 60% в год. Как следствие, постоянно усложняется управление ими, и становится все сложнее обеспечивать их защиту. Наиболее ценная информация предприятий – их интеллектуальная собственность – часто теряется в растущем объеме неструктурированных документов, большинство из которых не являются конфиденциальными. Хранилища неструктурированных данных обычно слабее защищены, что делает их более уязвимыми для внутренних и внешних угроз. Как показали результаты целевых атак, таких как Hydraq и других широко известных случаев потери внутренних данных, объекты интеллектуальной собственности сейчас более уязвимы, чем когда-либо ранее.  

Vector Machine Learning самостоятельно обнаружит данные, требующие защиты от утечек

Организация должна идентифицировать конфиденциальные документы до того, как предпринимать шаги по их защите. Предотвращение потери данных традиционно основывалось на двух категориях технологии определения данных: методе «цифровых отпечатков» и описании информации. Метод «цифровых отпечатков» предполагает сбор всех документов, которые подлежат защите и применения к каждому файлу уникального индектификатора - «цифрового отпечатка». Альтернативный подход (описание данных) предполагает определение типовых выражений и списка ключевых слов для идентификации критических документов. Метод «цифровых отпечатков» может представлять значительные трудности для организаций с широко рассредоточенными данными, а разработка правил, описывающих данные, может оказаться очень трудоемким процессом, результаты которого могут быть менее точными, чем при использовании метода «цифровых отпечатков». 

«Система, использующая технологию Vector Machine Learning от Symantec сможет предугадать появление новых, требующих особых прав доступа, данных, и существенно улучшит возможности организаций по их защите, – отметил Джон Олтсик (Jon Oltsik), главный аналитик Enterprise Strategy Group, – Эта технология дает возможность организациям упростить обнаружение, идентификацию и обеспечение защиты их интеллектуальной собственности».

Vector Machine Learning – инновационная технология анализа, разработанная Symantec. Она призвана преодолеть ограничения существующих технологий идентификации документов. Используя образцы используемых данных, программное решение на базе алгоритмов Vector Machine Learning можно научить узнавать ключевые характеристики и определять внутренние различия конфиденциальных и неконфиденциальных данных.

Такой подход устраняет необходимость создания правил, основанных на ключевых словах, а также потребность в применении «цифровых отпечатков» к новым документам при их создании. Принцип работы технологии Vector Machine Learning позволяет создать точные правила идентификации документов на основании анализа примеров документов, а в дальнейшем, усовершенствовать точность правил по мере выявления и обработки системой позитивных и негативных примеров документов.

Data Insight упрощает процесс защиты информации

Решение Symantec Data Loss Prevention 11 включает усовершенствованную технологию Symantec Data Insight, которая улучшает процесс реагирования на инциденты путем определения наиболее уязвимых мест хранения данных и автоматического уведомления об этом пользователей. Новая функция ранжирования рисков Risk Scoring будет создавать рейтинг папок для восстановления с учетом объемов и уровня критичности данных, содержащихся в папках, а также параметров доступности папки. Новая функция восстановления данных Data Owner Remediation будет автоматически предупреждать пользователей по e-mail о потенциальных рисках, которым подвергаются их данные, хранящиеся в общих центрах обработки данных. Такой комплекс мероприятий повысит эффективность защиты данных организаций.

«Решение Symantec Data Loss Prevention 11 призвано помочь профессионалам в сфере информационной безопасности в осуществлении более эффективной защиты конфиденциальной информации, – заявил Аарон Аубрэхт (Aaron Aubrecht), старший директор по управлению решениями корпорации Symantec, – Мы слышали от наших заказчиков о том, что более точное определение объектов интеллектуальной собственности и ранжирование операций с ними по степени риска являются основополагающими элементами эффективной программы защиты информации. Наша технология Vector Machine Learning и усовершенствованная технология Data Insight представляют комплексное решение такой задачи».

Защита «конечных точек» стала ещё надёжнее

Symantec Data Loss Prevention 11 представит дополнительные возможности для работы в конечных точках, включая новые функции, которые позволят организациям разрешать пользователям работу с большим количеством приложений и устройств для хранения данных, при этом поддерживая высокий уровень защиты. Функция контроля доступа к приложениям Application File Access Control призвана обеспечить поддержку таких пользовательских программ, как iTunes, Skype и WebEx не подвергая риску конфиденциальные данные.

Функция Trusted Devices обеспечит поддержку использования широкого спектра устройств хранения и ограничит возможность копирования конфиденциальных данных. Можно разрешить копирование только на санкционированные носители (например, носители, выданные и контролируемые компанией). Еще одна новая функция в данной версии решения – Endpoint FlexResponse, она упрощает защиту данных конечных точек путем интеграции с другими решениями от Symantec, а также решениями сторонних производителей, например, для шифрования данных и программ управления правами предприятий (Enterprise Rights Management, ERM).

Критическая уязвимость в TLP позволяет обойти защиту Linux

В популярной утилите TLP, которую многие владельцы ноутбуков на Linux используют для управления энергопотреблением, обнаружили критическую уязвимость. Причём проблема нашлась во время обычной проверки пакета командой SUSE Security Team и располагается во вполне штатном коде.

Брешь получила идентификатор CVE-2025-67859 и затрагивает версию TLP 1.9.0, где появился новый profiles daemon.

Этот демон работает с root-правами и управляет профилями питания через D-Bus. Задумка хорошая, но реализация подвела: в механизме аутентификации Polkit нашлась логическая ошибка, которая фактически позволяет обойти проверку прав.

Как объясняют исследователи, демон должен был строго проверять, кто именно отправляет команды. Но из-за ошибки любой локальный пользователь мог взаимодействовать с ним без должной аутентификации — а значит, менять системные настройки питания от имени root.

На этом сюрпризы не закончились. В ходе анализа специалисты SUSE нашли ещё несколько проблем, уже связанных с исчерпанием ресурсов. В частности, механизм profile hold, который позволяет временно «зафиксировать» профиль питания, оказался совершенно без валидации. Локальный пользователь мог создавать неограниченное количество таких блокировок, причём без прав администратора.

В итоге это открывает прямую дорогу к DoS-атаке: демон начинает захлёбываться от бесконечных записей в структуре данных, куда попадают числа, строки с причиной и идентификаторы приложений — всё это полностью контролируется клиентом.

Любопытно, что SUSE вспомнила похожую историю с демоном управления питанием в GNOME: аналогичную проблему находили ещё несколько лет назад. Отдельно исследователи отметили вопросы к механизму «куки», которыми отслеживаются profile hold. Формально речь шла о предсказуемости значений, но в сочетании с отсутствием лимитов это лишь расширяло поверхность атаки.

К счастью, реакция была быстрой. SUSE сообщила об уязвимостях разработчикам ещё в декабре, и в версии TLP 1.9.1 проблема уже закрыта. В частности, число одновременных profile hold теперь жёстко ограничено числом 16, что убирает риск истощения ресурсов.

RSS: Новости на портале Anti-Malware.ru