Российские ученые предложили новую архитектуру памяти для ИИ

Российские ученые предложили новую архитектуру памяти для ИИ

Российские ученые предложили новую архитектуру памяти для ИИ

Российские учёные из МФТИ решили проблему, с которой сталкиваются современные нейросети: они склонны «забывать» ранее полученные данные в процессе обучения. Эта особенность долгое время мешала развитию автономного транспорта, робототехники и дронов. В МФТИ разработали новую модель памяти для искусственного интеллекта, способную устранить этот эффект.

Новая архитектура основана на тех же принципах, по которым работает человеческий мозг.

Ключевая идея — механизм перестройки нейронных связей, или ревайринг. Он работает совместно с обычными процессами обучения, помогая системе сохранять ранее усвоенную информацию и одновременно запоминать новую. Это достигается за счёт постепенного превращения кратковременной памяти в долговременную.

В результате, если традиционная нейросеть «забывает» данные уже после тысячи циклов активности, то новая архитектура выдерживает более 170 миллионов. Пока разработка существует в виде компьютерной модели, однако уже ведутся работы по созданию её физического аналога.

«Возможно, мы нашли ответ на одну из главных загадок мозга: как он умудряется учиться новому, не стирая при этом старые «файлы». Всё дело в постоянной перестройке нейронных связей — ревайринге. Именно он превращает хрупкую кратковременную память в прочные долговременные воспоминания», — рассказал «Известиям» ведущий научный сотрудник лаборатории нейробиоморфных технологий МФТИ Сергей Лобов.

Как отметил ведущий эксперт в области ИИ «Университета 2035» Ярослав Селиверстов, преимущества новой архитектуры памяти особенно важны для автономных систем — роботов и беспилотного транспорта. По его словам, именно склонность нейросетей к «забыванию» ранее накопленных данных является главным барьером для их дальнейшего развития.

«В промышленной робототехнике такие системы позволят создавать универсальных роботов-манипуляторов, которые смогут осваивать новые операции с деталями, не забывая предыдущие навыки сборки. Для беспилотных автомобилей и дронов это означает возможность непрерывно адаптироваться к уникальным дорожным условиям и ландшафтам, накапливая собственный опыт без вмешательства инженеров. Перспективно также их применение в персонализированных медицинских диагностических системах, способных эволюционировать вместе с историей болезни пациента, и в умных домах, подстраивающихся под привычки жильцов», — отметил Ярослав Селиверстов.

Руководитель программ развития МГУ им. М.В. Ломоносова Ольга Валаева добавила, что технология может найти применение и в медицинских устройствах — прежде всего в нейроимплантах, компенсирующих влияние дегенеративных процессов в головном мозге, например при болезни Паркинсона.

Эксперт рынка TechNet НТИ, генеральный директор группы компаний ST IT Антон Аверьянов уточнил, что пока полученные результаты нельзя напрямую применить к самым сложным моделям, обрабатывающим сотни миллиардов или триллионы параметров. Однако, по его мнению, эта задача будет решена в обозримом будущем.

Минцифры создаст полигон для тестирования систем с ИИ на безопасность

Минцифры планирует создать киберполигон для тестирования систем с искусственным интеллектом (ИИ) на безопасность. В первую очередь речь идёт о решениях, предназначенных для применения на объектах критической инфраструктуры, а также о системах с функцией принятия решений.

О том, что министерство ведёт работу над созданием такого полигона, сообщил РБК со ссылкой на несколько источников.

Площадка будет использоваться для тестирования ИИ-систем, которые в дальнейшем должны пройти сертификацию ФСТЭК и ФСБ России. Это предусмотрено правительственным законопроектом «О применении систем искусственного интеллекта органами, входящими в единую систему публичной власти, и внесении изменений в отдельные законодательные акты».

Документ вводит четыре уровня критичности ИИ-систем:

  • минимальный — влияние на безопасность отсутствует или минимально;
  • ограниченный;
  • высокий — относится к системам, используемым на объектах критической информационной инфраструктуры;
  • критический — системы, способные угрожать жизни и здоровью людей или безопасности государства, а также автономные комплексы, принимающие самостоятельные решения.

Определять уровень критичности будет Национальный центр искусственного интеллекта в сфере госуправления при правительстве. Эта же структура займётся ведением реестра сертифицированных ИИ-систем.

Конкретные требования к сертификации планируется закрепить в отдельных нормативных документах, которые пока находятся в разработке. На текущем этапе единственным обязательным условием является включение программного обеспечения в реестр Минцифры.

По данным «Российской газеты», распространять новые требования на коммерческие ИИ-решения не планируется. При этом в аппарате первого вице-премьера Дмитрия Григоренко пояснили, что ключевая цель законопроекта — снизить риски применения ИИ в сферах с высокой ценой ошибки, включая здравоохранение, судопроизводство, общественную безопасность и образование.

RSS: Новости на портале Anti-Malware.ru