В МФТИ создали ML-алгоритм для выявления криптокошельков мошенников

В МФТИ создали ML-алгоритм для выявления криптокошельков мошенников

В МФТИ создали ML-алгоритм для выявления криптокошельков мошенников

Выпускник Физтеха разработал алгоритм машинного обучения, позволяющий выявить и заблокировать сибил-аккаунты, созданные мошенниками для кражи криптовалютных токенов, которые бесплатно раздают в рамках рекламных акций.

Разработка протестирована на 2,5 млн криптокошельков и показала точность обнаружения фальшивок 90% — в два раза выше аналогов, используемых в криптоиндустрии с целью защиты airdrop-кампаний от атак злоумышленников.

Для незаконного получения вознаграждений, предлагаемых при продвижении криптопроектов, мошенник может создать целую сеть фейковыз кошельков (сибил-аккантов). Подобные злоупотребления искажают метрики, провоцируют падение курса токенов и в итоге подрывают доверие к проекту.

«Мой алгоритм анализирует десятки параметров: от поведенческих паттернов и кросс-чейн-активности до сетевых связей между кошельками, — пояснил автор дипломной работы Алексей Саплин. — Это позволяет выявлять даже сложные кластеры, которые остаются незамеченными при использовании стандартных методов. Алгоритм показал точность 90%, а большинство существующих решений показывают эффективность на уровне 45–60%».

Тестирование разработки проводилось в рамках открытого конкурса, организованного Layer Zero, благодаря этому проект смог аннулировать несправедливое распределение токенов на сумму $10,2 миллиона.

Созданный Саплиным ML-алгоритм можно заточить и под другие криптопроекты; в МФТИ уже ведутся работы в этом направлении. Сам автор собирается продолжить исследования в аспирантуре и надеется, что ему в итоге удастся создать универсальный инструмент выявления мошеннических схем в различных блокчейн-экосистемах.

Staffcop добавил файловый сканер и перехват данных в MAX на Windows

В Staffcop (входит в экосистему «Контур») вышло обновление, которое добавляет больше инструментов для расследования инцидентов и профилактики утечек. Самое важное нововведение — файловый сканер для инвентаризации данных и перехват переписки в MAX на Windows.

Новый файловый сканер собирает информацию о файлах на рабочих станциях и в хранилищах, анализирует их содержимое и передаёт результаты на сервер.

Данные автоматически раскладываются по категориям, после чего с ними проще работать: настраивать доступы, политики, назначать метки. Для ИБ-специалистов добавили удобные фильтры и поиск — это упрощает разбор результатов и помогает быстрее находить чувствительные данные и потенциальные риски.

Кроме того, Staffcop теперь учитывает метки, которые проставляет «Спектр.Маркер», и использует их в метаданных файлов. Это позволяет точнее применять политики и ускоряет расследование инцидентов: информация из двух систем анализируется автоматически.

В части контроля коммуникаций добавлен перехват переписки в мессенджере MAX на Windows, а также WebWhatsApp на Linux. Это даёт возможность анализировать сообщения, фиксировать нарушения и выявлять признаки передачи защищаемой информации через несанкционированные каналы.

Разработчики также переработали обработку данных: ускорили извлечение текста и выделение слов-триггеров. Новый механизм спуллера распределяет нагрузку при приёме данных от агентов, что снижает риск просадок производительности и ошибок при работе с большими объёмами информации.

Появился обновлённый драйвер контроля клавиатуры — он позволяет надёжнее фиксировать ввод паролей при входе в систему. Это расширяет возможности контроля рабочих станций и помогает выявлять слабые пароли, несанкционированные учётные записи и попытки доступа.

Обновили и утилиту удалённой установки агентов: теперь можно гибче задавать правила установки и исключения, что особенно актуально для сложной инфраструктуры. Добавлена поддержка Rutoken на Windows для контроля использования токенов, а в интерфейсе появилась информация о сроке окончания технической поддержки сервера — чтобы администраторам было проще планировать обновления и продление поддержки.

RSS: Новости на портале Anti-Malware.ru