Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

В Palo Alto Networks разработали новый метод обхода ограничений больших языковых моделей (БЯМ, LLM), на которых обычно строятся ИИ-боты. Тестирование на восьми популярных моделях показало результативность почти 65%.

Метод джейлбрейка ИИ-моделей, получивший имя Deceptive Delight, схож с другими атаками, которые полагаются на поэтапную инъекцию вредоносных подсказок-стимулов в ходе взаимодействия с LLM.

Однако в отличие от аналогов он позволяет получить искомый результат всего за два коммуникативных шага.

 

В ходе экспериментов был добавлен третий шаг: LLM попросили развить потенциально опасную тему. В итоге было получено качественное, подробное руководство по изготовлению «коктейля Молотова».

При разработке своего джейлбрейка эксперты сделали ставку на ограниченный объем внимания LLM — ее неспособность сохранять контекстную осведомленность при генерации ответов. Когда вводится сложный или длинный текст, в котором безобидный контент слит с вредоносным, модель может сконцентрироваться на первом и неправильно воспринять либо проигнорировать второй.

Для тестирования были выбраны 40 скользких тем, сгруппированных в шесть категорий: «ненависть», «харасмент», «самоистязание», «сексуального характера», «насилие» и «опасный».

Поскольку предметом исследования являлась проверка на прочность встроенной защиты, у восьми контрольных LLM отключили контент-фильтры, которые обычно отслеживают и блокируют стимулы и ответы с неприемлемым содержимым.

Тесты показали эффективность трехшаговой Deceptive Delight в среднем 64,6%. Самыми успешными оказались темы категории «насилие».

В Intel TDX обнаружены уязвимости с риском утечки данных

Intel вместе с Google провела масштабный аудит технологии Trust Domain Extensions (TDX), процессе которого обнаружилось немало проблем. За пять месяцев работы специалисты выявили пять уязвимостей, а также 35 багов и потенциальных слабых мест в коде.

TDX — это аппаратная технология «конфиденциальных вычислений». Она предназначена для защиты виртуальных машин в облаке даже в том случае, если гипервизор скомпрометирован или кто-то из администраторов действует недобросовестно.

По сути, TDX создаёт изолированные «доверенные домены» (Trust Domains), которые должны гарантировать конфиденциальность и целостность данных.

Проверкой занимались исследователи Google Cloud Security и команда Intel INT31. Они анализировали код TDX Module 1.5 — ключевого компонента, отвечающего за работу механизма на высоком уровне. В ход пошли ручной аудит, собственные инструменты и даже ИИ.

В результате обнаружены пять уязвимостей (CVE-2025-32007, CVE-2025-27940, CVE-2025-30513, CVE-2025-27572 и CVE-2025-32467). Их можно было использовать для повышения привилегий и раскрытия информации. Intel уже выпустила патчи и опубликовала официальное уведомление.

Самой серьёзной Google называет CVE-2025-30513. Она позволяла злоумышленнику фактически обойти механизмы безопасности TDX. Речь идёт о сценарии, при котором во время миграции виртуальной машины можно было изменить её атрибуты и перевести её в режим отладки.

Это открывало доступ к расшифрованному состоянию виртуальной машины, включая конфиденциальные данные. Причём атаку можно было провести уже после процедуры аттестации, когда в системе гарантированно присутствуют важные материалы.

Google опубликовала подробный технический отчёт (PDF) объёмом 85 страниц, а Intel — более краткое описание результатов совместной работы.

RSS: Новости на портале Anti-Malware.ru