Шпионы Shedding Zmiy проникли в десятки российских организаций

Шпионы Shedding Zmiy проникли в десятки российских организаций

Шпионы Shedding Zmiy проникли в десятки российских организаций

По данным ГК «Солар», нацеленная на шпионаж APT-группа с условным именем Shedding Zmiy объявилась в России в 2022 году. На ее счету уже несколько десятков атак на госструктуры, промпредприятия, телеком-сети и другие объекты критической важности.

Обнаружив в ходе анализа бэкдор CobInt, эксперты предположили, что автор целевых атак — группировка Cobalt (это ее «фирменный» инструмент). Однако расследование показало, что это не так: взломщики не искали финансовой выгоды, они воровали данные с тем, чтобы использовать их в дальнейших атаках или слить в Telegram.

Обширный набор инструментов и техник позволяет Shedding Zmiy каждый раз менять тактику. Кибершпионы также подняли множество C2-серверов на территории России, воспользовавшись услугами облачных и хостинг-провайдеров, что помогает им обходить блокировки по GeoIP.

В атаках применяются и выложенные в паблик зловреды, и спецразработки под конкретные цели (загрузчики, бэкдоры, веб-шеллы). Для хранения вредоносного кода иногда используются взломанные серверы.

В арсенале Shedding Zmiy исследователи суммарно насчитали 35 инструментов разного назначения и 20 используемых уязвимостей — в основном хорошо известных, таких как Log4Shell, ProxyShell и PrintNightmare .

Один эксплойт оказался редким и замысловатым. Соответствующую уязвимость в ASP.NET (десериализация ненадежных данных в параметре VIEWSTATE) разработчики Microsoft пытались устранить еще десять лет назад, но затем оставили эту затею — в «Солар» полагают, из-за сложности использования лазейки.

«В процессе расследований мы нашли как знакомые по деятельности группы Cobalt вредоносные инструменты, так и не встречавшиеся ранее уникальные образцы ВПО, в частности, бэкдор Bulldog и загрузчик XDHijack, — отметил эксперт из команды Solar 4RAYS Антон Каргин. — Кроме того, группировка разработала целый фреймворк для эксплуатации уязвимости десериализации VIEWSTATE. Всё это говорит о высоком профессионализме злоумышленников и немалых ресурсах».

Участники Shedding Zmiy также активно используют элементы социальной инженерии. Так, в ходе одной из атак они создали в Telegram поддельный аккаунт ИБ-специалиста целевой компании и от его имени выманили у сотрудника учетные данные для доступа к внутренних хостам.

В другом случае злоумышленники сыграли на доверии между компаниями-партнерами (атака типа Trusted Relationship): взломав сеть телеком-провайдера, разослали от его имени десятки вредоносных писем в другие организации.

ИИ учится задавать вопросы сам себе — и от этого становится умнее

Даже самые продвинутые ИИ-модели пока что во многом лишь повторяют — учатся на примерах человеческой работы или решают задачи, которые им заранее придумали люди. Но что если искусственный интеллект сможет учиться почти как человек — сам задавать себе интересные вопросы и искать на них ответы?

Похоже, это уже не фантазия. Исследователи из Университета Цинхуа, Пекинского института общего искусственного интеллекта (BIGAI) и Университета штата Пенсильвания показали, что ИИ способен осваивать рассуждение и программирование через своеобразную «игру с самим собой».

Проект получил название Absolute Zero Reasoner (AZR). Его идея проста и изящна одновременно. Сначала языковая модель сама придумывает задачи по программированию на Python — достаточно сложные, но решаемые. Затем она же пытается их решить, после чего проверяет себя самым честным способом: запускает код.

 

Если решение сработало — отлично. Если нет — ошибка становится сигналом для обучения. На основе успехов и провалов система дообучает исходную модель, постепенно улучшая и умение формулировать задачи, и способность их решать.

Исследователи протестировали подход на открытой языковой модели Qwen с 7 и 14 миллиардами параметров. Оказалось, что такой «самообучающийся» ИИ заметно улучшает навыки программирования и логического мышления — и в некоторых тестах даже обгоняет модели, обученные на вручную отобранных человеческих данных.

 

По словам аспиранта Университета Цинхуа Эндрю Чжао, одного из авторов идеи, подход напоминает реальный процесс обучения человека:

«Сначала ты копируешь родителей и учителей, но потом начинаешь задавать собственные вопросы. И в какой-то момент можешь превзойти тех, кто тебя учил».

Идея «самоигры» для ИИ обсуждается не первый год — ещё раньше её развивали такие исследователи, как Юрген Шмидхубер и Пьер-Ив Удейер. Но в Absolute Zero особенно интересно то, как растёт сложность задач: чем умнее становится модель, тем более сложные вопросы она начинает ставить перед собой.

«Уровень сложности растёт вместе с возможностями модели», — отмечает исследователь BIGAI Цзилун Чжэн.

Сейчас подход работает только там, где результат можно легко проверить — в программировании и математике. Но в будущем его хотят применить и к более «жизненным» задачам: работе ИИ-агентов в браузере, офисных сценариях или автоматизации процессов. В таких случаях модель могла бы сама оценивать, правильно ли агент действует.

«В теории это может стать путём к суперинтеллекту», — признаёт Чжэн.

RSS: Новости на портале Anti-Malware.ru