Новая классификация атак мошенников поможет снизить их успех на 15–20%

Новая классификация атак мошенников поможет снизить их успех на 15–20%

Новая классификация атак мошенников поможет снизить их успех на 15–20%

Российские ученые по-новому систематизировали атаки, использующие элементы социальной инженерии, и надеются, что их разработка поможет бизнесу и госструктурам перейти от реактивного подхода к защите к проактивному.

Авторы проекта — сотрудники Президентской академии народного хозяйства и госслужбы (РАНХиГС) и Санкт-Петербургского Федерального исследовательского центра РАН (СПб ФИЦ РАН).

Как выяснили исследователи, действия мошенников, независимо от применяемой схемы, можно свести в единый процесс:

  • сбор информации для выработки сценария и определения масштабов атаки (массовая, персонализированная);
  • установка контакта с потенциальными жертвами (через телефонную связь, имейл, мессенджеры, соцсети, сайты знакомств);
  • манипуляции для получения искомого эффекта (мнимые перспективы финансовой выгоды, шантаж, намек на возможность романтических отношений);
  • реализация — жертва обмана раскрывает конфиденциальные данные, переходит по фишинговой ссылке, загружает зловреда и т. п.

Подобная унификация позволяет предприятиям на основе анализа цифровой активности сотрудников принять превентивные меры даже против новых мошеннических схем, с невиданными ранее приманками, уловками и легендами.

Используя наработки ученых, HR-отделы и службы ИБ смогут заранее выявлять потенциальных жертв мошенничества с доступом к корпоративным системам и соответствующим образом адаптировать средства защиты, образовательные программы и тренинги.

«Классификация позволяет предусмотреть траектории атак и внедрить точечные меры профилактики на каждом этапе, — комментирует Татьяна Тулупьева, соавтор исследования, советник проректора по науке Академии и ведущий научный сотрудник СПб ФИЦ РАН. — Важный превентивный момент — распространение информации о многочисленных видах атак для широкой аудитории, чтобы любой пользователь имел возможность распознать воздействие, которое на него пытаются оказать злоумышленники».

По оценкам исследователей, их разработка поможет снизить успешность атак злоумышленников, сделавших ставку на человеческий фактор, в среднем на 15–20%, а также сберечь для российской экономики миллиарды рублей.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

Мультиагентная система взяла на себя треть задач SOC в Yandex Cloud

Yandex Cloud сообщила, что автоматизировала значительную часть рутинных задач в своём центре мониторинга безопасности (SOC), внедрив мультиагентную систему на базе ИИ. По данным компании, около 39% операций, которые раньше занимали существенную долю рабочего времени аналитиков, теперь выполняют ИИ-помощники. Речь идёт о разборе алертов, первичном анализе инцидентов и поиске данных во внутренних базах.

Внутри SOC несколько ИИ-агентов работают параллельно: один сортирует входящие уведомления, другой перепроверяет данные и выявляет ошибки.

Такой подход позволяет снизить риск некорректных выводов и ускорить фильтрацию ложных срабатываний. По оценкам компании, время на обработку некорректных оповещений сократилось на 86%.

За два года Yandex Cloud прошла путь от экспериментов с ИИ в SOC до полноценной промышленной эксплуатации. Значимую роль сыграли RAG-технологии, которые позволяют моделям работать с актуальными документами и накопленной базой инцидентов. Мультиагентный подход, в свою очередь, сделал возможным разделить задачи между специализированными помощниками, способными учитывать контекст крупных корпоративных инфраструктур.

По словам Евгения Сидорова, директора по информационной безопасности Yandex Cloud, система помогает ускорять обнаружение угроз и автоматизировать обработку данных киберразведки. Он отмечает, что современные SOC-команды всё чаще работают на стыке ИБ и инструментов ИИ.

Мультиагентная система используется не только внутри компании, но и доступна клиентам облачной платформы — в частности, в сервисах Detection and Response и Security Deck. Их уже применяют организации из разных отраслей, включая финтех, здравоохранение и страхование, для автоматизации части процессов мониторинга.

ИИ-помощник, встроенный в сервисы, может разбирать инциденты пошагово, анализировать индикаторы компрометации и артефакты в контексте облачной инфраструктуры, а также предлагать варианты реагирования. Он также собирает дополнительные данные, например по IP-адресам, и формирует рекомендации по предотвращению дальнейших угроз.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

RSS: Новости на портале Anti-Malware.ru