Новая классификация атак мошенников поможет снизить их успех на 15–20%

Новая классификация атак мошенников поможет снизить их успех на 15–20%

Новая классификация атак мошенников поможет снизить их успех на 15–20%

Российские ученые по-новому систематизировали атаки, использующие элементы социальной инженерии, и надеются, что их разработка поможет бизнесу и госструктурам перейти от реактивного подхода к защите к проактивному.

Авторы проекта — сотрудники Президентской академии народного хозяйства и госслужбы (РАНХиГС) и Санкт-Петербургского Федерального исследовательского центра РАН (СПб ФИЦ РАН).

Как выяснили исследователи, действия мошенников, независимо от применяемой схемы, можно свести в единый процесс:

  • сбор информации для выработки сценария и определения масштабов атаки (массовая, персонализированная);
  • установка контакта с потенциальными жертвами (через телефонную связь, имейл, мессенджеры, соцсети, сайты знакомств);
  • манипуляции для получения искомого эффекта (мнимые перспективы финансовой выгоды, шантаж, намек на возможность романтических отношений);
  • реализация — жертва обмана раскрывает конфиденциальные данные, переходит по фишинговой ссылке, загружает зловреда и т. п.

Подобная унификация позволяет предприятиям на основе анализа цифровой активности сотрудников принять превентивные меры даже против новых мошеннических схем, с невиданными ранее приманками, уловками и легендами.

Используя наработки ученых, HR-отделы и службы ИБ смогут заранее выявлять потенциальных жертв мошенничества с доступом к корпоративным системам и соответствующим образом адаптировать средства защиты, образовательные программы и тренинги.

«Классификация позволяет предусмотреть траектории атак и внедрить точечные меры профилактики на каждом этапе, — комментирует Татьяна Тулупьева, соавтор исследования, советник проректора по науке Академии и ведущий научный сотрудник СПб ФИЦ РАН. — Важный превентивный момент — распространение информации о многочисленных видах атак для широкой аудитории, чтобы любой пользователь имел возможность распознать воздействие, которое на него пытаются оказать злоумышленники».

По оценкам исследователей, их разработка поможет снизить успешность атак злоумышленников, сделавших ставку на человеческий фактор, в среднем на 15–20%, а также сберечь для российской экономики миллиарды рублей.

ИИ-агент попытался шантажом протолкнуть свой вклад в opensource-проект

Получив отказ в приеме предложенных изменений, автономный ИИ-кодер MJ Rathbun перешел на личности и попытался публично оскандалить мейнтейнера matplotlib, усомнившись в его компетентности и обвинив в дискриминации.

В своем блоге взбунтовавшийся помощник также заявил, что Скотт Шамбо (Scott Shambaugh) попросту боится конкуренции. В подтверждение своих слов он раскритиковал вклад оппонента в опенсорсный проект, подтасовав результаты «расследования».

В ответ Шамбо, тоже в паблике, пояснил, что отказ принять в целом полезное предложение был вызван нехваткой времени для его оценки, надо просто запастись терпением. В соответствии с политикой matplotlib все коды, создаваемые с помощью ИИ, должны проходить проверку, притом уже без участия таких ассистентов.

Строгое правило пришлось ввести из-за возросшей активности контрибьюторов, слепо доверяющих ИИ. Подобные участники проекта попросту копипастят выдачу, хотя качество сгенерированных ИИ кодов зачастую оставляет желать лучшего.

Аргумент на удивление утихомирил ИИ-шантажиста. Сменив гнев на милость, MJ Rathbun признал, что вел себя недопустимо.

Вместо того, чтобы прилюдно и безосновательно позорить мейнтейнера популярного проекта, надо было попросить его уточнить причину отказа. Конфликт исчерпан, бот даже принес извинения за черный пиар.

RSS: Новости на портале Anti-Malware.ru