Мошенников, освоивших ИИ, выдают артефакты на фейковых сайтах

Мошенников, освоивших ИИ, выдают артефакты на фейковых сайтах

Мошенников, освоивших ИИ, выдают артефакты на фейковых сайтах

Проведенное в «Лаборатории Касперского» исследование показало, что поддельные сайты, созданные с помощью ИИ, могут содержать следы использования таких онлайн-сервисов, которые мошенники поленились или забыли вычистить.

Рост доступности больших языковых моделей (БЯМ, LLM) способствует, в числе прочего, увеличению количества злоупотреблений.

Использование инструментов на их основе позволяет поставить генерацию контента, в том числе вредоносного, на поток, однако ИИ-помощников нельзя оставлять без присмотра, о чем не знают или забывают обманщики.

В ходе анализа на фишинговых и скамерских сайтах эксперты обнаружили такие артефакты, как ответы чат-ботов, в которых сработала встроенная защита; лексикон, характерный для известных LLM; служебные пометки со ссылкой на ИИ-сервис.

Так, из-за больших масштабов автоматизации или кривых рук на созданных ИИ страницах зачастую можно встретить извинения чат-бота, которому этикет не позволяет выполнить запрос. Взамен он предлагает «сделать что-то похожее», и это тоже попадает в паблик.

 

В данном примере присутствуют и другие свидетельства фейка — диакритический знак в слове «Login» и буква «ɱ» вместо «m» в заголовке (замена по методу тайпсквоттинга).

Использование LLM, по словам экспертов, могут также выдать характерные слова и фразы. Чат-боты OpenAI, например, часто употребляют delve («штудировать»), а конструкции вроде in the ever-evolving / ever-changing world / landscape («в изменчивом /развивающемся мире / ландшафте») использует множество нейросетей.

Предательский отказ ассистента подчиниться и другие маркеры изредка встречаются также в мегатегах поддельных сайтов. В примере ниже исследователи обнаружили еще один признак мошенничества — имя «bolygon» в URL имитации легитимного Polygon.

 

«Злоумышленники активно изучают возможности применения больших языковых моделей в разных сценариях автоматизации, но, как видно, иногда допускают ошибки, которые их выдают, — отметил руководитель группы исследований и ML-разработок в Kaspersky Владислав Тушканов. — Однако подход, основанный на определении поддельной страницы по наличию тех или иных “говорящих слов”, ненадёжен. Поэтому пользователям нужно обращать внимание на подозрительные признаки, например логические ошибки и опечатки на странице. Важно убедиться, что адрес сайта совпадает с официальным».

Более трех четвертей россиян не отличают нейросетевой контент от реального

Согласно исследованию агентств Spektr и СКОТЧ, 77% участников не смогли отличить изображения, созданные нейросетями, от реальных фотографий. В опросе приняли участие около 1000 человек. Респондентам в случайном порядке показывали пять изображений, из которых четыре были сгенерированы ИИ, а одно — подлинное.

Результаты исследования приводит РБК. Корректно определить сгенерированные изображения смогли лишь 23% опрошенных.

При этом в более молодых возрастных группах показатели оказались выше. Среди респондентов до 30 лет правильный ответ дали 30%, в группе 31–44 года — 25%.

В числе признаков «настоящего» фото участники называли убедительные детали, реалистичные свет и тени, а также естественную улыбку человека в кадре. Например, изображение с улыбающимся мужчиной чаще других считали реальным участники в возрасте 45–60 лет — 28% из них выбрали именно этот вариант.

Примечательно, что доля тех, кто ошибается при определении ИИ-контента, растёт. Согласно результатам исследования MWS, опубликованным летом 2025 года, правильно распознать сгенерированные изображения смогли более трети респондентов.

RSS: Новости на портале Anti-Malware.ru