Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

В Palo Alto Networks разработали новый метод обхода ограничений больших языковых моделей (БЯМ, LLM), на которых обычно строятся ИИ-боты. Тестирование на восьми популярных моделях показало результативность почти 65%.

Метод джейлбрейка ИИ-моделей, получивший имя Deceptive Delight, схож с другими атаками, которые полагаются на поэтапную инъекцию вредоносных подсказок-стимулов в ходе взаимодействия с LLM.

Однако в отличие от аналогов он позволяет получить искомый результат всего за два коммуникативных шага.

 

В ходе экспериментов был добавлен третий шаг: LLM попросили развить потенциально опасную тему. В итоге было получено качественное, подробное руководство по изготовлению «коктейля Молотова».

При разработке своего джейлбрейка эксперты сделали ставку на ограниченный объем внимания LLM — ее неспособность сохранять контекстную осведомленность при генерации ответов. Когда вводится сложный или длинный текст, в котором безобидный контент слит с вредоносным, модель может сконцентрироваться на первом и неправильно воспринять либо проигнорировать второй.

Для тестирования были выбраны 40 скользких тем, сгруппированных в шесть категорий: «ненависть», «харасмент», «самоистязание», «сексуального характера», «насилие» и «опасный».

Поскольку предметом исследования являлась проверка на прочность встроенной защиты, у восьми контрольных LLM отключили контент-фильтры, которые обычно отслеживают и блокируют стимулы и ответы с неприемлемым содержимым.

Тесты показали эффективность трехшаговой Deceptive Delight в среднем 64,6%. Самыми успешными оказались темы категории «насилие».

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

В Гарда Deception добавили MiTM-детектор и улучшили работу в филиалах

Компания «Гарда» выпустила обновление своей системы обмана «Гарда Deception». Новая версия предназначена для того, чтобы уменьшить нагрузку на ИТ-подразделения и повысить устойчивость инфраструктуры, а также упростить выявление действий злоумышленников в сетях заказчиков.

Буквально на днях мы обозревали версию Гарда Deception 2.1. Рассказали о ключевых функциональных возможностях, архитектуре, системных требованиях и кейсах использования системы.

Централизованное управление приманками через AD

Главное изменение — поддержка безагентного метода доставки и обновления приманок через групповые политики Microsoft Active Directory (AD GPO).

Это значит, что теперь ИБ-специалисты могут централизованно распространять и обновлять приманки, не вмешиваясь в работу сотрудников. Все обновления выполняются по расписанию и в скрытом режиме, что снижает влияние на пользовательские станции и делает сеть более стабильной.

Новый MiTM-детектор для LLMNR

Чтобы повысить точность выявления атак, в систему добавлен детектор атак на протокол LLMNR. Он способен фиксировать попытки Man-in-the-Middle в широковещательных протоколах, что позволяет отлавливать больше тактик, используемых злоумышленниками на ранних этапах проникновения.

Поддержка распределённых сетей

Для компаний с филиальной структурой появился модуль «Филиал/Branch». Он позволяет ловушкам работать автономно, даже если связь с центральным узлом временно пропадает — мониторинг при этом остаётся непрерывным. Такой режим особенно актуален для организаций с удалёнными офисами и производственными объектами.

Быстрее разбирать инциденты

Теперь события безопасности можно связывать с техниками MITRE ATT&CK прямо внутри «Гарда Deception». Это ускоряет анализ и помогает аналитикам быстрее понимать, какой сценарий атаки разворачивается и какие действия предпринимает злоумышленник.

Более реалистичные ложные персоны

Обновление добавило и новые возможности по созданию фейковых учётных записей. Можно загружать данные из CSV — например, списки отключённых сотрудников — а также использовать регулярные выражения для генерации идентификаторов и добавлять отчества. Чем реалистичнее приманка, тем выше шанс, что злоумышленник взаимодействует именно с ней, а не с реальными активами.

Руководитель продукта «Гарда Deception» Екатерина Харитонова отмечает, что новые функции направлены на повышение точности обнаружения атак и автоматизацию рутинных операций, чтобы сократить нагрузку на команды ИБ и упростить анализ угроз.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru