В Пензенском университете создали антивирус с ИИ

В Пензенском университете создали антивирус с ИИ

В Пензенском университете создали антивирус с ИИ

Созданный в Пензенском университете (ПГУ) антивирус использует нейросети и машинное обучение и не требует постоянного подключения к интернету. Разработку планируют завершить в этом году, а в ноябре подать заявку на сертификацию.

Из рассказа руководителя проекта, которого цитируют «Известия», можно понять, что вооруженный ИИ защитный софт способен предугадывать действия пользователя, и его можно подстроить под конкретные условия и задачи. Пока готова только версия для Windows, умеющая распознавать трояны, руткиты и нелегальные майнеры.

Для выявления фактов заражения используются два вида анализа:«нейросетевой» и «нейросигнатурный». В первом случае написанная на Python нейросеть оценивает работу кода, выполняя сравнение с известными ей алгоритмами поведения вредоносов.

Второй компонент определяет угрозы, используя ИИ в комбинации с традиционным сигнатурным анализом. Авторы проекта исходили из того, что написанный с нуля зловред — большая редкость, вирусописатели обычно в той или иной степени используют наработки коллег по цеху.

По замыслу, созданный в стенах ПГУ антивирус можно будет использовать как в корпоративном окружении, так и в индивидуальном порядке. Продукт планируют распространять по подписке.

Заметим, без связи с Сетью (не получая обновлений) такой софт сможет детектировать только вредоносные программы с заимствованиями, притом теми, с которыми он уже сталкивался. Впрочем, приведенное репортером описание слишком лаконично и туманно, стоит подождать более конкретных дополнений.

Внедрение ИИ-технологий — новомодный и прогрессивный тренд, в России ему следуют многие крупные компании, включая представителей сферы ИБ, а Минцифры считает курс на ИИ одним из своих приоритетов. Что касается антивирусной защиты, комментатор из UserGate отметил, что применение машинного обучения способно повысить эффективность детектирования до 96%.

Как бы то ни было, подобные инструменты нельзя оставлять без контроля: нейросети не всегда выдают достоверную информацию, результаты желательно проверять. Им можно доверить черновую работу для ускорения ИБ-процессов и повышения эффективности, а принятие решений оставить за оператором.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Через вредоносные Blender-файлы распространяют инфостилер StealC V2

Исследователи обнаружили новую кампанию «с российским следом», в рамках которой злоумышленники распространяют инфостилер StealC V2 через вредоносные файлы Blender, загруженные на крупные 3D-маркетплейсы вроде CGTrader. Blender позволяет выполнять Python-скрипты — они используются для автоматизации, кастомных панелей, ригов и аддонов.

Если у пользователя включена функция Auto Run, скрипты запускаются автоматически при открытии файла. Этим и пользуются атакующие: многие художники и моделлеры включают Auto Run ради удобства.

Специалисты Morphisec заметили, что вредоносные .blend-файлы содержат встроенный Python-код, который загружает лоадер с домена в Cloudflare Workers.

 

Далее загрузчик скачивает PowerShell-скрипт, который подтягивает два ZIP-архива — ZalypaGyliveraV1 и BLENDERX — с IP-адресов, контролируемых злоумышленниками.

Архивы распаковываются во временную папку, откуда создают LNK-файлы в автозагрузке для постоянства. Затем жертве подсовываются два компонента: основной инфостилер StealC и вспомогательный Python-стилер для подстраховки.

 

По данным Morphisec, атакующие используют последнюю версия второго поколения StealC — того самого, который ранее изучала Zscaler. Новый StealC заметно расширил функции:

  • крадёт данные из 23+ браузеров и поддерживает расшифровку паролей на стороне сервера, включая Chrome 132+;
  • поддерживает свыше 100 расширений криптокошельков и более 15 отдельных приложений;
  • ворует данные мессенджеров (Telegram, Discord, Tox, Pidgin), VPN-клиентов (ProtonVPN, OpenVPN) и почтовых программ, включая Thunderbird;
  • оснащён обновлённым механизмом обхода UAC.

При этом свежие версии StealC по-прежнему почти не детектируются антивирусами: Morphisec отмечает, что образец, который они изучали, не был распознан ни одним движком на VirusTotal.

Атака опасна тем, что 3D-маркетплейсы не могут проверять встроенный в файлы код. Художникам, аниматорам и моделлерам рекомендуется:

  • отключить автоматический запуск Python-скриптов: Blender → Edit → Preferences → снять галочку с Auto Run Python Scripts;
  • относиться к 3D-ассетам как к потенциально исполняемому коду;
  • скачивать файлы только у надёжных авторов или тестировать их в песочнице.

Злоумышленники явно ориентируются на профессиональное сообщество 3D-контента — и такая схема может оказаться особенно опасной для студий и фрилансеров, которые работают с большим количеством моделей из внешних источников.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru