Российский исследователь взломал репозиторий и багтрекер Ruby on Rails

Российский исследователь взломал репозиторий и багтрекер Ruby on Rails

Проникновение было осуществлено с целью наглядно продемонстрировать наличие изъяна в системе безопасности среды Ruby on Rails и веб-приложений, разработанных с ее помощью. До этого специалист активно пытался убедить разработчиков в серьезности проблемы, однако не встретил понимания и решил последовать старому правилу - лучше один раз увидеть, чем сто раз услышать.

Среда Ruby on Rails предназначена для построения веб-приложений на языке Ruby. Ее основная задача состоит в упрощении и оптимизации процесса разработки программных продуктов. Одним из наиболее популярных сетевых проектов, при создании и сопровождении которого применялась эта среда, является GitHub - крупная платформа для хранения исходных кодов и совместной работы над ними. На этой площадке размещается в том числе и официальный репозиторий Ruby on Rails вкупе с системой отслеживания ошибок и изъянов в ПО.

В четверг отечественный исследователь заявил об уязвимости в этой программной среде, отметив, что ее успешная эксплуатация может окончиться введением посторонних сведений в базу данных приложений Ruby on Rails через внешние веб-формы - почти как в случае с SQL-инъекциями. Проблема произрастает из функции под названием "массовое назначение", особенности которой можно злонамеренно использовать - если не приняты надлежащие меры безопасности. Вообще говоря, теоретическая возможность злоупотребления этим функционалом была описана еще несколько лет назад, однако команда Ruby on Rails сочла, что ответственность за управление "массовым назначением" должна лежать на самих разработчиках программных продуктов.

"Массовое назначение" - это функция управления программными атрибутами. Программисты Ruby on Rails предпочли использовать подход белого списка: по умолчанию разрешено изменять все атрибуты, а создатели веб-приложений должны самостоятельно составлять черный список тех параметров, которые потенциально опасны и запрещены к модифицированию. Альтернативный подход диаметрально противоположен (и более безопасен): запретить изменение всех атрибутов и возложить на разработчиков задачу их выборочной активации по мере необходимости и целесообразности.

Такая организация работы с атрибутами потенциально приводит к возникновению множества недостаточно защищенных сетевых ресурсов, о чем и говорил российский специалист в своем заявлении. После безуспешных попыток убедить в этом команду Ruby on Rails он решил показать, что даже один из наиболее успешных проектов, вышедших из этой среды - GitHub, - не обеспечен надлежащей защитой от "массового назначения". Создав ложную запись с особыми параметрами в багтрекере, он впоследствии сумел подменить публичный ключ одного из разработчиков своим собственным и присвоить права на доступ к репозиторию. Это позволило ему ввести в проект новый файл, продемонстрировав тем самым, что исходные коды Ruby on Rails подвержены риску несанкционированной модификации.

Администрация GitHub оперативно устранила уязвимость и начала общий аудит с целью обнаружить новые потенциальные изъяны. Учетная запись исследователя была приостановлена, но затем возобновлена - когда технические специалисты проекта убедились, что в его действиях не было злого умысла. По-видимому, теперь разработчики Ruby on Rails не будут столь категоричны в своих суждениях и с большей охотой займутся поиском решений проблемы "массового назначения".

PC World

Письмо автору

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru