VALL-E от Microsoft имитирует любой голос по трем секундам аудиопримера

VALL-E от Microsoft имитирует любой голос по трем секундам аудиопримера

VALL-E от Microsoft имитирует любой голос по трем секундам аудиопримера

Microsoft презентовала ИИ-модель, способную преобразовать текст в голос, который ей дали послушать всего 3 секунды. Получается очень похоже на оригинал, к тому же VALL-E (именно так назвали программу) умеет копировать интонации и добавлять естественные шумы. В “широкий прокат” VALL-E не пойдет, пока не придумают антипрограмму, способную распознавать робота.

Исследователи компании анонсировали программу VALL-E, которая синтезирует человеческий голос близко к оригиналу. Название сервиса созвучно известному американскому мультфильму про робота ВАЛЛ-И. Он очищал от мусора заброшенную людьми Землю, потом отправился в космос, вернулся и сумел спасти планету.

Для анализа искусственному интеллекту достаточно всего трехсекундного аудиопримера.

Создатели VALL-E говорят, что придумали программу в помощь приложениям, преобразующим текст в речь, когда нужно отредактировать какой-то отрывок в хорошем качестве. В этом случае программа может сымитировать то, что спикер на самом деле не говорил.

В Microsoft VALL-E называют моделью языка нейронного кода. Она построена на технологии EnCodec, которую корпорация Meta (признана экстремистской и запрещена на территории России) анонсировала в минувшем октябре.

В отличие от других методов преобразования текста в речь, которые обычно используют сигналы, VALL-E генерирует дискретные коды аудиокодеков из текстовых и акустических подсказок. Программа анализирует, как “звучит” человек, разбивает эту информацию на отдельные компоненты (“токены”) и учится на этих данных.

“Чтобы синтезировать речь, VALL-E генерирует соответствующие акустические маркеры, взятые из трехсекундного аудиопримера, а также использует фонетические подсказки, которые мог бы использовать человек, если бы отрывок длился дольше, — говорится в анонсе Microsoft. — Сгенерированные акустические маркеры используются для синтеза окончательной формы сигнала с помощью соответствующего декодера нейронного кодека”.

Microsoft уже натренировала VALL-E на тысячах аудиокниг на английском языке. На странице сервиса можно прослушать трехсекундный образец, оригинал и речь от VALL-E.

Некоторые примеры всё ещё напоминают роботизированный голос, но есть и очень похожие на заданную человеческую речь.

Кроме того, VALL-E способна воспроизводить акустическое окружение. Например, синтезировать речь, как будто она звучит из телефонной трубки.

В Microsoft заявили, что понимают риски VALL-E и не будут делиться кодом с другими, пока не придумают детектор, способный отличать сублимированную речь от настоящей.

“Так как VALL-E может синтезировать речь, сохраняющую идентичность спикера, программа может нести потенциальные риски неправильного использования модели”, — признают создатели. Речь идет о подмене голосовой идентификации или выдаче себя за другого человека.

Риски снизит модель, позволяющая найти отличия и определить, был ли аудиоклип синтезирован VALL-E.

Американские ученые в сентябре предложили выявлять голосовые дипфейки с помощью флюидодинамики. В университете Флориды изучили достижения артикуляционной фонетики и разработали новую технику распознавания дипфейк-аудио — по отсутствию ограничений, влияющих на работу голосового аппарата человека. Созданный детектор способен определить подмену с точностью 92,4%.

Добавим, в ноябре Роскомнадзор заинтересовался разработкой НИУ ИТМО в области распознавания лжи по видеозаписи, а аналитики Сбера внесли Deepfake в одну из самых опасных технологий, способных угрожать кибербезопасности в перспективе ближайших пяти лет.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru