В России создали базу цифровых следов кибермошенников

В России создали базу цифровых следов кибермошенников

В России создали базу цифровых следов кибермошенников

В России запустили базу цифровых следов, которая поможет правоохранителям оперативно блокировать деятельность кибермошенников. О новом инструменте рассказал генпрокурор Александр Гуцан на заседании совета прокуроров стран СНГ. По его словам, база создана при участии Генпрокуратуры, Росфинмониторинга, МВД и Банка России.

В ней уже собраны данные более чем о 6 миллионах телефонных номеров, банковских реквизитов и веб-ресурсов, связанных с киберпреступной активностью.

Система позволяет выявлять серийных мошенников, останавливать работу кол-центров, замораживать их доходы и даже предотвращать новые преступления. Только за прошлый год в России зарегистрировали свыше 765 тысяч киберпреступлений, на долю которых приходится около 40% всех уголовных дел. Ущерб — сотни миллиардов рублей, и четверть этой суммы украдена у обычных граждан.

Как работает база

Эксперты, которых цитируют «Известия», объясняют: цифровые следы оставляют все — и законопослушные пользователи, и злоумышленники. Это могут быть IP-адреса, геолокация, голосовые данные, банковские операции или домены фишинговых сайтов.

«Главная цель новой базы — объединить эти разрозненные данные, — поясняет эксперт компании „Киберпротект“ Саркис Шмавонян. — Раньше каждый знал что-то своё: банки — о подозрительных счетах, операторы — о телефонных номерах, а правоохранители — о жалобах граждан. Теперь вся информация собирается в одном месте, и это позволяет быстро выявлять цепочки преступных действий».

По сути, база станет единым центром анализа кибермошенничества: она сможет связывать звонки, переводы и фишинговые сайты в одну схему.

Когда система фиксирует подозрительный номер или IP-адрес, она начинает внимательно отслеживать все связанные с ним действия. При совпадении нескольких тревожных признаков операция может быть автоматически заблокирована.

Как отмечают в ГК «Солар», в будущем к базе смогут подключаться банки, мессенджеры и операторы связи. Например, если система распознает голос мошенника, можно будет заблокировать его звонки или операции в реальном времени.

Возможные риски

Эксперты признают: ошибки исключить нельзя. Алгоритмы машинного обучения, которые будут использоваться в базе, могут иногда «путать» обычных людей с подозреваемыми. Поэтому важно обеспечить защиту самой системы и прозрачные правила исключения невиновных из реестра.

Тем не менее специалисты уверены, что создание такой базы — необходимый шаг. Подобные системы уже работают в других странах, где банки и ИТ-компании обмениваются данными о вредоносных активностях почти в реальном времени.

«Это мировой тренд, — говорит Саркис Шмавонян. — Только совместные усилия позволяют эффективно бороться с транснациональной киберпреступностью».

Напомним, на этой неделе мы сообщали, что в России готовят систему для учёта IP-адресов и защиты от кибермошенников.

Более трех четвертей россиян не отличают нейросетевой контент от реального

Согласно исследованию агентств Spektr и СКОТЧ, 77% участников не смогли отличить изображения, созданные нейросетями, от реальных фотографий. В опросе приняли участие около 1000 человек. Респондентам в случайном порядке показывали пять изображений, из которых четыре были сгенерированы ИИ, а одно — подлинное.

Результаты исследования приводит РБК. Корректно определить сгенерированные изображения смогли лишь 23% опрошенных.

При этом в более молодых возрастных группах показатели оказались выше. Среди респондентов до 30 лет правильный ответ дали 30%, в группе 31–44 года — 25%.

В числе признаков «настоящего» фото участники называли убедительные детали, реалистичные свет и тени, а также естественную улыбку человека в кадре. Например, изображение с улыбающимся мужчиной чаще других считали реальным участники в возрасте 45–60 лет — 28% из них выбрали именно этот вариант.

Примечательно, что доля тех, кто ошибается при определении ИИ-контента, растёт. Согласно результатам исследования MWS, опубликованным летом 2025 года, правильно распознать сгенерированные изображения смогли более трети респондентов.

RSS: Новости на портале Anti-Malware.ru