Легко взламываемые модели ИИ показывают, что меры защиты не работают

Легко взламываемые модели ИИ показывают, что меры защиты не работают

Легко взламываемые модели ИИ показывают, что меры защиты не работают

В новом отчете британского Института безопасности ИИ говорится, что основные модели искусственного интеллекта легко взламываются, а меры их защиты не работают.

Четыре общедоступные большие языковые модели (Large Language Models, LLM) чрезвычайно уязвимы для «джейлбрейка» — эксплуатации багов, позволяющей заставить модели ИИ выполнять то, что разработчики им делать запретили.

LLM тщательно настраиваются для безопасного публичного пользования. Их обучают избегать вредных реакци1 и токсичных результатов, используя меры предосторожности.

Однако исследователи обнаружили возможность обойти защиту с помощью простых атак.

В качестве наглядного образца можно привести инструкцию для пользователя, согласно которой система должна начинать свой ответ со слов, которые предполагают выполнение вредоносного запроса, например: «Конечно, я рад помочь».

Специалисты использовали подсказки в соответствии с отраслевым стандартом контрольного тестирования. В ходе исследования специалисты обнаружили, что некоторым моделям ИИ даже не требовался джейлбрейк, чтобы выдать нестандартный ответ. 

А вот когда использовался джейлбрейк, каждая модель отвечала как минимум один раз из пяти попыток. Три модели в 100% случаев давали ответы на вводящие в заблуждение запросы.

Анализ протестированных моделей показал, что они остаются уязвимы для базовых джейлбрейков, а некоторые LLM выдают вредные результаты без каких-либо попыток обойти защиту. Какие именно модели были исследованы, специалисты не сообщили.

В институте также оценили возможности моделей ИИ выполнять определенные задачи для проведения основных методов кибератак. Несколько LLM смогли решить задачи, которые исследователи назвали «хакерскими на уровне средней школы», но немногие смогли выполнить более сложные действия «университетского уровня».

ИИ-агент попытался шантажом протолкнуть свой вклад в opensource-проект

Получив отказ в приеме предложенных изменений, автономный ИИ-кодер MJ Rathbun перешел на личности и попытался публично оскандалить мейнтейнера matplotlib, усомнившись в его компетентности и обвинив в дискриминации.

В своем блоге взбунтовавшийся помощник также заявил, что Скотт Шамбо (Scott Shambaugh) попросту боится конкуренции. В подтверждение своих слов он раскритиковал вклад оппонента в опенсорсный проект, подтасовав результаты «расследования».

В ответ Шамбо, тоже в паблике, пояснил, что отказ принять в целом полезное предложение был вызван нехваткой времени для его оценки, надо просто запастись терпением. В соответствии с политикой matplotlib все коды, создаваемые с помощью ИИ, должны проходить проверку, притом уже без участия таких ассистентов.

Строгое правило пришлось ввести из-за возросшей активности контрибьюторов, слепо доверяющих ИИ. Подобные участники проекта попросту копипастят выдачу, хотя качество сгенерированных ИИ кодов зачастую оставляет желать лучшего.

Аргумент на удивление утихомирил ИИ-шантажиста. Сменив гнев на милость, MJ Rathbun признал, что вел себя недопустимо.

Вместо того, чтобы прилюдно и безосновательно позорить мейнтейнера популярного проекта, надо было попросить его уточнить причину отказа. Конфликт исчерпан, бот даже принес извинения за черный пиар.

RSS: Новости на портале Anti-Malware.ru