Мошенники ускоряют профилирование мишеней с помощью ИИ

Мошенники ускоряют профилирование мишеней с помощью ИИ

Мошенники ускоряют профилирование мишеней с помощью ИИ

Авторы сложных сценариев отъема денег у юрлиц стали использовать ИИ, чтобы ускорить сбор данных о намеченных жертвах. В RTM Group зафиксировали сотни случаев хорошо подготовленных атак на малый и средний бизнес.

Сама мошенническая схема выглядит, как BEC-атака, только вместо имейл используются мессенджер (в данном случае Telegram) и телефонная связь. Применение ИИ, по оценке экспертов, позволило повысить эффективность обмана на 40%; при этом преступный доход ОПГ средней величины (10 участников) может ежедневно составлять от 1 млн до нескольких десятков млн рублей.

В ходе подготовки злоумышленники, вооружившись ИИ, собирают информацию из слитых в Сеть баз. Найдя совпадения по месту работы и совместным счетам, они разбивают мишени на пары: владелец – управляющий компании, гендиректор – его зам, директор – главбух и т. п.

Затем в Telegram создаются поддельные аккаунты лидеров каждой пары, и боты начинают слать сообщения от их имени, вовлекая подчиненных в диалог. В качестве темы обычно используются непорядочность знакомых / клиентов либо мифическая проверка со стороны правоохраны (к примеру, ФСБ).

Сообщения бота могут содержать фамилии реальных представителей госорганов, скриншоты специально составленных документов. После такой обработки следует звонок персоны, упоминавшейся в ходе беседы.

Лжеревизор начинает задавать вопросы о случаях мошенничества, долгах, неких платежах, пытаясь определить финансовую проблему, которую можно использовать как предлог для выманивания денег переводом на левый счет.

«Основной рекомендацией по минимизации рисков является постоянное внимание к деталям в ходе виртуального общения с партнерами по бизнесу и сотрудниками, особенно когда речь идет о проблемах с законом, переводах финансовых средств, проверках компетентных органов, — заявили эксперты «Известиям». — Также специалисты RTM Group рекомендуют не выкладывать в публичный доступ прямые контакты руководителей компаний и департаментов».

На днях мы анализировали «злые» аналоги ChatGPT: xxXGPT, WormGPT, WolfGPT, FraudGPT, DarkBERT, HackerGPT. Рассказали, в чём состоит опасность и как с нею бороться.

Эксперты: за год число вредоносных opensource-компонентов возросло в 11 раз

В 2025 году в компании CodeScoring зарегистрировали 457 тыс. вредоносных библиотек с открытым исходным кодом — в 11 раз больше, чем в предыдущем году. Зафиксировано также 14 тыс. новых уязвимостей в таких компонентах.

По словам специалистов, сохраняют актуальность и более ранние неприятные находки — к примеру, RCE-уязвимость Log4Shell, которая все еще присутствует в 15 тыс. сторонних библиотек. Публикация подобных пакетов грозит атаками на цепочку поставок.

В уходящем году также зафиксировано появление новой, еще более опасной угрозы — самоходного червя Shai Hulud, способного создавать новые репозитории и воровать конфиденциальные данные с CI/CD-платформ.

В связи с бурным ростом популярности ИИ объявился новый вектор атаки — slopsquatting: злоумышленники начали использовать склонность больших языковых моделей (БЯМ, LLM) к галлюцинациям для внедрения в легитимные проекты небезопасного кода.

Из-за этой особенности умный помощник по разработке может ошибиться и вместо легитимной библиотеки предложить для использования вредоносную со схожим названием. По данным CodeScoring, в России ИИ-ассистентов применяют 30% разработчиков, и потенциально опасные галлюцинации происходят у LLM в 20% случаев.

Чтобы защититься от атак на цепочку поставок, эксперты советуют вести тщательный учет компонентов, используемых для сборки софта, при установке библиотек выставлять запрет на исполнение скриптов, а также следовать стандарту ГОСТ Р 56939-2024 и активнее внедрять технологии безопасной разработки.

RSS: Новости на портале Anti-Malware.ru