Через 5 лет ИИ будет сам находить и помечать фейки в интернете

Через 5 лет ИИ будет сам находить и помечать фейки в интернете

Через 5 лет ИИ будет сам находить и помечать фейки в интернете

Развитие технологий скоро приведет к тому, что ИИ будет сам искать и маркировать фейки в интернете. Горизонт планирования — 5-10 лет, предполагают эксперты. Сейчас исследователи работают над вычислением следов искусственного изменения контента и нейромаркетингом.

Перспективами обнаружения фейковых материалов с агентством ТАСС поделился руководитель рабочей группы Национальной технологической инициативы "Нейронет" Андрей Иващенко.

“Уже сейчас, — говорит эксперт, — есть большое количество технологий, автоматически распознающих различного рода "склейки" и монтаж в видеоматериалах”.

Текстовые анализаторы могут определить, написан ли текст одним человеком или разными людьми, что особенно востребовано при анализе комментариев в социальных сетях или отзывов на товары и услуги.

“Вполне вероятно, что через 5-10 лет мы будем заходить на сайт и сразу видеть отметки о фейковых материалах", — предполагает Иващенко.

Эксперт также считает, что сам интернет станет более адаптированным под потребности человека. Люди, например, смогут управлять операционной системой с помощью голосовых команд.

Разработчики "Нейронета" сейчас работают над развитием двух видов технологий, полезных для борьбы с фейками, рассказал Иващенко.

В первую категорию входят ИИ-системы, анализирующие текст, аудио, фото- и видеоизображения. Они позволяют вычислить следы искусственного изменения контента.

Второе направление — нейромаркетинг. В этом случае анализируются эмоциональные и поведенческие реакции человека с учетом биологической (невербальной) обратной связи — глазодвигательных, кожных реакций, температуры тела, ЭЭГ, ЭКГ, по которым можно определить истинные эмоции человека.

“Аналогичный принцип можно перенести на распознавание таких сигналов на видео. Например, следить за движением глаз, дыханием, положением тела", — объясняет эксперт.

Добавим, в конце февраля Роскомнадзор анонсировал запуск системы обнаружения информационных бомб “Вепрь”. Заработать она должна уже в этом году. Зимой запустили и другую систему со схожими целями. “Окулус” представляет собой автоматическую систему поиска запрещенного контента. Основная тематика поиска — экстремизм, наркотики, митинги, пропаганда ЛГБТ и военные фейки. К 2025 году “Окулус” обещают научить детально анализировать действия людей в интернете. “Вепрь” и “Окулус” должны войти в единую систему мониторинга информационного пространства.

287 расширений для Chrome с 37 млн шпионили за пользователями

Исследователи безопасности обнаружили 287 расширений для Google Chrome, которые, по их данным, тайно отправляли данные о посещённых пользователями сайтах на сторонние серверы. Суммарно такие расширения были установлены около 37,4 млн раз, что равно примерно 1% мировой аудитории Chrome.

Команда специалистов подошла к проверке не по описаниям в магазине и не по списку разрешений, а по фактическому сетевому поведению.

Для этого исследователи запустили Chrome в контейнере Docker, пропустили весь трафик через MITM-прокси и начали открывать специально подготовленные URL-адреса разной длины. Идея была простой: если расширение «безобидное» — например, меняет тему или управляет вкладками — объём исходящего трафика не должен расти вместе с длиной посещаемого URL.

А вот если расширение передаёт третьей стороне полный адрес страницы или его фрагменты, объём трафика начинает увеличиваться пропорционально размеру URL. Это измеряли с помощью собственной метрики. При определённом коэффициенте расширение считалось однозначно «сливающим» данные, при более низком — отправлялось на дополнительную проверку.

 

Работа оказалась масштабной: на автоматическое сканирование ушло около 930 процессорных дней, в среднем по 10 минут на одно расширение. Подробный отчёт и результаты опубликованы в открытом репозитории на GitHub, хотя авторы намеренно не раскрыли все технические детали, чтобы не облегчать жизнь разработчикам сомнительных аддонов.

Среди получателей данных исследователи называют как крупные аналитические и брокерские экосистемы, так и менее известных игроков. В отчёте фигурируют, в частности, Similarweb, Big Star Labs (которую авторы связывают с Similarweb), Curly Doggo, Offidocs, а также ряд других компаний, включая китайские структуры и небольших брокеров.

Проблема не ограничивается абстрактной «телеметрией». В URL могут содержаться персональные данные, ссылки для сброса паролей, названия внутренних документов, административные пути и другие важные детали, которые могут быть использованы в целевых атаках.

 

Пользователям советуют пересмотреть список установленных расширений и удалить те, которыми они не пользуются или которые им незнакомы. Также стоит обращать внимание на разрешение «Читать и изменять данные на всех посещаемых сайтах» — именно оно открывает путь к перехвату URL.

RSS: Новости на портале Anti-Malware.ru