Автор роликов на YouTube борется с ИИ-плагиатом, подсовывая ботам мусор

Автор роликов на YouTube борется с ИИ-плагиатом, подсовывая ботам мусор

Автор роликов на YouTube борется с ИИ-плагиатом, подсовывая ботам мусор

На YouTube плодятся видеоматериалы, созданные на основе краденого контента с помощью ИИ. Автоматизированный плагиат позволяет мошенникам быстро получать доход с минимальными усилиями, а жертвы сплотились и пытаются дать отпор.

Автор видеоконтента F4mi борется с ИИ-ботами, ворующими расшифровки, вставляя в них большое количество скрытых мусорных данных, Подобное дополнение не мешает пользователям читать тексты, но способно обесценить творение умного помощника, обрабатывающего добычу скрейперов.

Разработанный F4mi метод полагается на использование формата ASS, созданного десятки лет назад для субтитров. Мусор вносится в расшифровки в пропорции 2:1, при этом используются фрагменты из открытых источников либо сгенерированные ИИ выдумки.

Возможности ASS позволяют задать нулевые значения размера и прозрачности вставок, то есть сделать их невидимыми. В результате обработки таких файлов ИИ-пособник мошенников выдает тексты, непригодные для использования.

Автор идеи признает, что более мощные инструменты вроде ChatGPT o1 смогут отфильтровать мусор и правильно воспроизвести оригинал. В этом случае придется еще помудрить над ASS-файлами, чтобы затруднить задачу и таким помощникам.

Поддержки ASS на YouTube не предусмотрено, там отдают предпочтение YTT, но можно использовать конвертер. В мобильной версии YouTube содержимое таких файлов будет отображаться некорректно — в виде черного окна поверх видео.

Изобретательному автору удалось обойти и это препятствие. Был написан Python-скрипт, который прячет мусорные вставки как черный текст на черном фоне. Единственная проблема, которая пока не решена, — это креш, возникающий на слишком тяжелых файлах.

К сожалению, придуманный F4mi трюк не помеха для таких инструментов, как Whisper разработки OpenAI, который сам делает расшифровку аудиозаписей, притом, по отзывам, вполне сносно.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Челябинские ученые предложили систему защиты от сбоев промышленных систем

Чтобы защитить промышленные системы от атак и сбоев, коллектив исследователей из Южно-Уральского государственного университета (ЮУрГУ) предложил подход, основанный на принципах поведенческой аналитики. В основе решения лежит нейросеть Кохонена.

Результаты исследования российских специалистов опубликованы в сборнике International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM).

Разработанная в ЮУрГУ система работает в два этапа. Сначала она анализирует функционирование объекта в нормальном режиме и формирует эталонную модель. Затем переходит в режим мониторинга и оценивает поступающие данные, сравнивая их с полученной «нормой». При обнаружении значительных отклонений нейросеть подаёт сигнал о потенциально опасной ситуации.

Во время тестирования система правильно классифицировала 94% данных. Обучение нейросети заняло около 3,5 минут. Кроме того, решение успешно выявило действия, характерные для кибератак на промышленные объекты.

Разработчики планируют повысить точность модели и расширить её возможности для распознавания различных, в том числе сложных, сценариев атак.

«Ключевое преимущество нашего подхода — использование нейросети Кохонена, которая способна работать с большими массивами данных, когда показателей много и они тесно взаимосвязаны. Классические алгоритмы часто не справляются с такими объёмами и сложностью», — рассказал РИА Новости заведующий кафедрой «Защита информации» ЮУрГУ Александр Соколов.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru