Исследователи обнаружили многофункциональный зловред для Linux

Исследователи обнаружили многофункциональный зловред для Linux

Исследователи обнаружили многофункциональный зловред для Linux

Исследователи кибербезопасности из компании Aqua обнаружили новую вредоносную кампанию, получившую название Hadooken. Зловреды распространяются через серверы Oracle Weblogic и занимаются майнингом криптовалют, а также доставкой вредоносных программ для DDoS-ботнета.

Цепь атаки использует как известные уязвимости, так и ошибки в конфигурировании инфраструктуры, в частности, слабые пароли.

Вредоносная программа устанавливается в систему или через специальный скрипт, или программу, написанную на языке Python с идентичной функциональностью.

«Скрипта пытается просматривает различные каталоги, содержащим SSH-данные (учетные данные пользователя, информация хоста), и использует эту информацию для атаки на известные серверы. Затем он перемещается в боковом направлении по организации или подключенным средам, чтобы еще больше распространить вредоносную программу Hadooken», — такие подробности привел изданию The Hacker News исследователь компании Aqua Ассаф Моран.

Hadooken содержит два компонента: майнер криптовалют и утилита DDoS-ботнета Tsunami (он же Kaiten). Зловред распространяется с сервера, находящегося в Германии и принадлежащего хостингу Aeza International.

Серверы, принадлежащие данной компании, использовались в кампании 8220 Gang, которая использовала чужие вычислительные ресурсы для майнинга.

«Не снимайте меня»: как случайные прохожие смогут управлять видеосъёмкой

Камеры сегодня повсюду: в смартфонах, умных очках, экшн-камерах и даже в «умных» дверных звонках. Проблема в том, что в кадр регулярно попадают люди, которые вовсе не давали согласия на съёмку. Исследователи из Калифорнийского университета в Ирвайне решили проверить, можно ли это исправить и представили систему BLINDSPOT.

BLINDSPOT (PDF) — это прототип системы, которая позволяет случайным прохожим прямо сигнализировать камере о своих предпочтениях по конфиденциальности.

Без регистрации, без загрузки биометрии в облако и без привязки к личности. Всё работает локально, на устройстве.

Если человек попадает в поле зрения камеры и подаёт сигнал, система находит его лицо, отслеживает его и автоматически размывает изображение ещё до сохранения или передачи видео. Причём BLINDSPOT проверяет, что сигнал действительно исходит от того, чьё лицо находится в кадре — если «география» не сходится, команда просто игнорируется.

Прототип реализовали на обычном смартфоне Google Pixel.

Исследователи протестировали сразу три варианта, как прохожий может «договориться» с камерой:

1. Жесты руками. Самый простой вариант — провести рукой перед лицом, чтобы включить размытие, и повторить жест в обратную сторону, чтобы его отключить. Никакого дополнительного оборудования не нужно. На расстоянии до 1-2 метров система срабатывала почти безошибочно, а реакция занимала меньше 200 миллисекунд.

2. Световой маячок. Во втором сценарии человек носит с собой небольшой LED-маячок, который мигает в заданном шаблоне и передаёт цифровой сигнал камере. Такой способ работает уже на расстоянии до 10 метров в помещении, с точностью около 90% и без ложных срабатываний. Время отклика — чуть больше полсекунды.

3. UWB-метка. Третий вариант использует ultra-wideband — радиотехнологию с очень точным определением расстояния и направления. Камера и метка обмениваются короткими сигналами через Bluetooth и UWB. Этот способ оказался самым стабильным: точность часто превышала 95%, система корректно работала с несколькими людьми сразу и не давала ложных срабатываний.

 

Главный вывод исследователей — управление приватностью «со стороны прохожего» вполне реально даже на обычном смартфоне.

Как и ожидалось, есть нюансы. Во-первых, расстояние: система должна «видеть» лицо. На практике это означает максимум около 10 метров — дальше лица становятся слишком мелкими для надёжного распознавания.

Во-вторых, толпы. Когда в кадре появляется больше восьми человек, производительность падает: растёт задержка, теряются кадры. Это ограничение связано с обработкой видео на устройстве и одинаково проявляется для всех способов сигнализации.

В-третьих, условия съёмки. Яркий солнечный свет мешает световым маячкам, движение в плотной толпе снижает точность жестов. Задержка между сигналом и фактическим размытием может составлять от долей секунды до двух секунд — и в этот момент запись всё ещё идёт.

Наконец, вопрос железа. Два из трёх вариантов требуют дополнительных устройств, которые пока не являются массовыми. Поддержка таких сигналов напрямую со смартфонов — скорее идея на будущее.

RSS: Новости на портале Anti-Malware.ru