CASPER — новый вектор атаки для извлечения данных с изолированных устройств

CASPER — новый вектор атаки для извлечения данных с изолированных устройств

CASPER — новый вектор атаки для извлечения данных с изолированных устройств

Специалисты Университета Корё представили новый вектор атаки под названием CASPER. С его помощью условный злоумышленник может передать данные с физически изолированных компьютеров на ближайший смартфон со скоростью 20 бит в секунду.

CASPER задействует установленные в целевом компьютере динамики в качестве канала передачи данных. Так ему удаётся отправить высокочастотный звук, который не может распознать человеческое ухо, и передать двоичный код или данные в виде азбуки Морзе на микрофон, расположенный на расстоянии до 1,5 м.

Принимающий информацию микрофон может находиться в смартфоне, который будет записывать звук в кармане злоумышленника. Кроме того, можно поставить ноутбук в комнате с целевым устройством.

Здесь исследователи завязали вектор атаки именно на внутренние динамики изолированного устройства, подающие определённые звуковые сигналы. Как правило, компьютеры с «воздушным зазором» используются на критически важных объектах (правительственные сети, энергетическая инфраструктура и т. п.), поэтому они не оснащаются внешними динамиками.

CASPER не отличается от других подобных атак начальным этапом: некий недобросовестный сотрудник сначала должен заразить целевой компьютер вредоносной программой. Это также может сделать и человек со стороны, только ему придётся тайно проникнуть в комнату с устройством.

Многие скептически относятся к такому методу, но ранее уже встречалась его успешная реализация — червь Stuxnet.

Установленный вредонос может взаимодействовать с файловой системой, находить определённые файлы или типы файлов и вытаскивать их из ОС. Помимо этого, зловред может выполнять функции кейлогера.

В результате программа будет кодировать данные, которые необходимо получить из изолированного устройства, в двоичном коде или в виде азбуки Морзе, затем — передавать их через внутренний динамик с помощью частотной модуляции. Всё это вредонос укладывает в незаметный ультразвук в диапазоне от 17 кГц до 20 кГц.

 

В ходе исследования специалисты использовали компьютер на базе Linux (Ubuntu 20.04) в качестве целевого устройства и Samsung Galaxy Z Flip 3 — как принимающий данные девайс. Находящийся на расстоянии 50 см смартфон смог распознать слово «covert» в передаваемых азбукой Морзе данных.

 

У CASPER есть и минусы, о которых пишут сами исследователи:

«Наш метод, безусловно, передаёт данные медленнее, чем другие атаки по скрытым каналам. Такие ограничения диктуются отправкой данных с помощью звука — он не так быстр, как оптические или электромагнитные векторы».

Напомним, в конце прошлого года мы рассказывали о COVID-bit — очередном способе кражи данных из изолированных систем.

В Windows 11 нашли способ включить нативный NVMe — SSD ускорились до 15%

Microsoft сделала важный шаг в сторону ускорения Windows — компания объявила, что Windows Server 2025 получит нативную поддержку NVMe-накопителей. Есть хорошая новость для обычных пользователей: поскольку архитектура Windows 11 во многом унаследована от Windows 10, энтузиасты уже нашли способ включить нативную NVMe-поддержку вручную — через правку реестра.

И, судя по первым отзывам, эффект вполне ощутимый. Пользователи, которые решились на эксперимент, сообщают о:

  • снижении задержек;
  • росте скорости чтения и записи;
  • приросте производительности примерно на 10–15%;
  • снижении нагрузки на процессор.

 

 

Кроме того, система становится устойчивее в сценариях с активной работой с диском — когда несколько приложений одновременно нагружают хранилище, Windows реже «замирает» целиком.

 

Впрочем, магии для всех не случилось: часть пользователей признаётся, что не заметила вообще никаких изменений после включения функции.

Исторически Windows работает со всеми накопителями через SCSI. Даже NVMe-диски в системе фактически «притворяются» SCSI-устройствами — команды NVMe просто переводятся в понятный Windows формат. Под это поведение за годы подстроились драйверы, утилиты и софт.

При переходе на нативный NVMe этот слой исчезает — и тут начинаются нюансы:

  • некоторые утилиты управления дисками перестают видеть NVMe-накопители;
  • другие, наоборот, обнаруживают их дважды;
  • может измениться идентификатор диска, из-за чего программы резервного копирования и другой софт теряют накопитель.

По данным Microsoft, нативная NVMe-поддержка в Windows рассчитана на 64 000 очередей, каждая из которых может обрабатывать 64 000 команд одновременно. В теории — это более 4 миллиардов операций в очереди.

Для сравнения: SCSI-протоколы ограничены 32 командами на очередь. Разница — колоссальная, особенно с учётом современных NVMe-дисков и систем с DDR5.

Если вы любите выжимать максимум из железа — попробовать можно уже сейчас, инструкции доступны. Но есть важное «но»:
перед экспериментами обязательно сделайте резервную копию системы или протестируйте всё в виртуальной среде. Правка реестра на таком уровне вполне может привести к нестабильной работе Windows.

В долгосрочной перспективе нативный NVMe, скорее всего, станет стандартом, когда разработчики начнут учитывать его в своих продуктах. А пока это история для энтузиастов, которые готовы немного рискнуть ради скорости.

RSS: Новости на портале Anti-Malware.ru