Власти США построят ИИ-песочницу для оттачивания навыков киберобороны

Власти США построят ИИ-песочницу для оттачивания навыков киберобороны

Власти США построят ИИ-песочницу для оттачивания навыков киберобороны

Американское Агентство по кибербезопасности и защите инфраструктуры (CISA) и директорат науки и технологий в составе Министерства внутренней безопасности США запустили проект по созданию новой среды аналитики, способной ускорить принятие решений по защите инфраструктуры в условиях быстро меняющегося ландшафта киберугроз.

Итоговая платформа CAP-M (Advanced Analytics Platform for Machine Learning, ранее CyLab) должна обеспечить тренировочную площадку для госструктур и частных организаций, где можно будет обмениваться опытом отражения кибератак и опробовать новейшие методы и инструменты анализа данных, в том числе полагающиеся на ИИ и машинное обучение.

Согласно утвержденному плану (PDF), работа над проектом включает создание прототипа многооблачной приватной среды для коллективной работы, исследование передовых технологий анализа данных, собранных из различных источников, а также разработку и автоматизацию рабочего цикла анализатора, использующего алгоритмы машинного обучения.

«Полномасштабная CAP-M будет включать многооблачную среду и множество структур данных — логическую базу данных, облегчающую доступ к наборам данных CISA, и приближенную к рабочим условиям среду для тестирования реальных решений», — сказано в анонсе правительства США.

Информация, собранная в ходе экспериментов, будет расшарена в госсекторе, академических кругах и среди представителей частного бизнеса. Сроки реализации проекта пока не назначены, и отсутствие конкретики, а также всеобъемлющие цели вызвали неоднозначную реакцию в ИБ-сообществе. 

Опрошенные The Register специалисты отметили, что в лабораторных условиях редко воспроизводятся сложность и фоновый шум реальной рабочей среды, поэтому CAP-M может оказаться хорошим решением этой проблемы. Вместе с тем использование ИИ и машинного обучения потребует солидного массива данных для тренировки системы; не исключено, что с этой целью придется создать автомат для проведения атак, особую форму алертов и новые способы распознавания ложных сигналов.

Многим импонирует идея объединить разрозненные ИБ-исследования и разработки в одном месте и сделать их общим достоянием, однако экспертов тревожит вопрос безопасности подобной платформы. Спонсируемые государством хакеры смогут изучить сильные и слабые стороны CAP-M и создать эксплойты или навести белый шум, способный ввести в заблуждение ИИ-анализаторы.

ИИ-агент попытался шантажом протолкнуть свой вклад в opensource-проект

Получив отказ в приеме предложенных изменений, автономный ИИ-кодер MJ Rathbun перешел на личности и попытался публично оскандалить мейнтейнера matplotlib, усомнившись в его компетентности и обвинив в дискриминации.

В своем блоге взбунтовавшийся помощник также заявил, что Скотт Шамбо (Scott Shambaugh) попросту боится конкуренции. В подтверждение своих слов он раскритиковал вклад оппонента в опенсорсный проект, подтасовав результаты «расследования».

В ответ Шамбо, тоже в паблике, пояснил, что отказ принять в целом полезное предложение был вызван нехваткой времени для его оценки, надо просто запастись терпением. В соответствии с политикой matplotlib все коды, создаваемые с помощью ИИ, должны проходить проверку, притом уже без участия таких ассистентов.

Строгое правило пришлось ввести из-за возросшей активности контрибьюторов, слепо доверяющих ИИ. Подобные участники проекта попросту копипастят выдачу, хотя качество сгенерированных ИИ кодов зачастую оставляет желать лучшего.

Аргумент на удивление утихомирил ИИ-шантажиста. Сменив гнев на милость, MJ Rathbun признал, что вел себя недопустимо.

Вместо того, чтобы прилюдно и безосновательно позорить мейнтейнера популярного проекта, надо было попросить его уточнить причину отказа. Конфликт исчерпан, бот даже принес извинения за черный пиар.

RSS: Новости на портале Anti-Malware.ru