Вымогатели все эффективнее используют данные геолокации

Вымогатели все эффективнее используют данные геолокации

Вымогатели все эффективнее используют данные геолокации

По словам экспертов, вредоносные программы класса вымогатели используют технологию геолокации для более таргетированных атак пользователей. Благодаря различным базам данных приблизительное местонахождение устройства можно определить по его IP-адресу.

Эти базы данных поддерживаются провайдерами интернет-услуг (ISP) и службами обнаружения трафика (TDS). Используя эту информацию, можно определить приблизительное (с погрешностью в 10-20 миль) местоположение интересуемого устройства.

Как утверждают исследователи, информация о геолокации используется злоумышленниками для того, чтобы заражать вымогателями те регионы, которые, по их мнению, принесут им больший доход. Кроме того, данные геолокации позволяют хакерам адаптировать требования выкупа под каждый язык, а также гораздо более точечно рассылать спам, с учетом местных организаций.

Основная задача киберпреступников – ориентироваться на регионы с более высоким средним уровнем дохода, например, на США, Японию, Европу. Как показывает практика, пользователи в этих регионах готовы платить более 500 долларов за ключи для расшифровки. Таким образом, данные о местонахождении жертвы дают кибервымогателям сразу несколько преимуществ.

«Общаться с жертвой на ее языке» - еще один принцип, доказавший свою состоятельность. Если пользователю не придется тратить время на перевод требований мошенников, они быстрее получат свои деньги. Некоторые виды вредоносов-вымогателей в дополнение к данным геолокации также проверяют языковые настройки на компьютере.

Из всего вышесказанного можно сделать вывод, насколько важно для тех, кто стоит за вымогателями учитывать местоположение атакуемых устройств. Это дает множество преимуществ, особенно при использовании метода запугивания – когда пользователю приходит письма из якобы правоохранительных органов. Жертва вероятнее откроет письмо, если название организации будет соответствовать региону, где она находится.

Поэтому будьте всегда предельно внимательны, проверяйте и перепроверяйте поступившую информацию, от кого бы она ни была. Не стоит сразу открывать письма и переходить по ссылкам, даже если источник с виду легитимный.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru